

From Requirements to Software:

Research and Practice

Scientific Editors

Piotr Kosiuczenko, Michał Śmiałek

This publication was supported

by the Ministry of Science and Higher Education

within the program related to the implementation

of tasks of science dissemination

(Decision No 530/P-DUN/2015 on 27/01/2015)

POLISH INFORMATION PROCESSING SOCIETY

From Requirements to Software:

Research and Practice

Scientific Editors

Piotr Kosiuczenko, Michał Śmiałek

Warszawa 2015

The Polish Information Processing Society

Scientific Council

prof. dr hab. Zdzisław Szyjewski – Chairman

dr hab. prof. PW Zygmunt Mazur – Vice-Chairman

dr hab. inż. prof. PG Cezary Orłowski – Vice-Chairman

dr hab. prof. US Jakub Swacha – Secretary

prof. dr hab. Zbigniew Huzar

prof. dr hab. inż. czł. rzecz. PAN Janusz Kacprzyk

prof. dr hab. inż. Marian Noga

prof. dr hab. inż. czł. rzecz. PAN Ryszard Tadeusiewicz

dr hab. prof. WWSZiP Tadeusz Gospodarek

dr hab. prof. UE we Wrocławiu Leszek A. Maciaszek

dr hab. inż. Lech Madeyski

dr hab. Zenon A. Sosnowski

dr inż. Adrian Kapczyński

dr inż. Andrzej Romanowski

dr inż. Marek Valenta

Authors

Marek Majchrzak, Łukasz Stilger – CHAPTER 1,

Aneta Poniszewska-Marańda – CHAPTER 2, Mariusz Postol – CHAPTER 3, Krzysztof

Wnuk, Emilia Mendes – CHAPTER 4, Zbigniew Huzar, Małgorzata Sadowska –

CHAPTER 5, Bogumila Hnatkowska – CHAPTER 6, Dariusz Gall, Anita Walkowiak –

CHAPTER 7, Stan Jarzabek, Kuldeep Kumar – CHAPTER 8, Sławomir Samolej, Tomasz

Rogalski – CHAPTER 9, Rakesh Rana, Andrzej Ratkowski, Miroslaw Staron, Christian

Berger – CHAPTER 10, Jarosław Wojciechowski – CHAPTER 11

Reviewers

Zbigniew Banaszak, Włodzimierz Bielecki, Leszek Borzemski, Krzysztof Cetnarowicz,

Zbigniew Czech, Włodzimierz Dąbrowski, Mariusz Flasiński, Janusz Górski, Adam

Grzech, Piotr Habela, Leszek Maciaszek, Jan Madey, Lech Madeyski, Karolina

Muszyńska, Jerzy Nawrocki, Mirosław Ochodek, Piotr Poprawski, Andrzej Stasiak,

Krzysztof Stencel, Jakub Swacha, Zdzisław Szyjewski, Lech Tuzinkiewicz, Bartosz

Walter, Andrzej Wasowski, Janusz Zalewski, Krzysztof Zielinski

Scientific Editors

Piotr Kosiuczenko, Michał Śmiałek

Technical Editor

Tomasz Klasa

Copyright by Polish Information Processing Society, Warsaw 2015

ISBN 978-83-60810-72-9

Edition: I. Copies: 200.

Publisher: Polish Information Processing Society

Printed by Westgraph Łukasz Piwowarski, Przecław Poland

Contents

Preface ... 9

I. Software Management

1. Experience Report: Introducing Kanban into an Automotive Software

Project ... 15

2. Adapting Scrum Method to Academic Settings ... 33

3. Agile Management of Research Projects in the Contract Context 47

4. The Project Management Perspective on Software Value: a Literature

Review ... 61

II. Modelling and Code Generation

5. Towards Creating Complete Business Process Models 77

6. Towards Automatic Sumo to UML Translation ... 87

7. PIM-PSM Pattern-Aware Transformations .. 101

8. Weak Separation of Tightly Coupled Concerns with Generic Pro-

gram Representations ... 119

III. Embedded and Web Systems

9. Experimental Real-Time Arinc 653 Based Pitch Angle Control Ap-

plication .. 139

10. Improving Dependability of Embedded Software Systems using Fault

Bypass Modeling (FBM) .. 155

11. From Academic Project to Production Software based on Java Web-

tier CMS Application ... 165

 9

Preface

In the late 1960’s, the discipline of software engineering emerged as a response to the

so-called software crisis caused by the growth of software complexity. In response,

methods from various engineering disciplines were applied. New methods for software

development and maintenance and new modelling languages have been developed.

Various tools supporting software development have emerged. Contemporary software

life-cycle contains various disciplines that range from requirements engineering to soft-

ware construction and software evolution. Requirements engineering includes such

elements as requirement elicitation, analysis, specification and validation. Software

design is devoted to defining software models and entire architectures of software sys-

tems, including their components and interfaces. The discipline of software construction

includes creation of good quality executable software through coding, validation and

testing. Software maintenance and evolution covers all activities aimed at supporting the

usage of software, such as correction of existing faults, improvement of its performance

and introduction of necessary extensions.

An important aspect of software engineering is software life-cycle process engi-

neering. It concerns such topics as: specification, implementation, assessment, meas-

urement, management and adjustment of the process that leads to producing quality

software. Software engineering management includes activities such as planning, coor-

dination, measurement, monitoring, controlling, and reporting, in order to properly

direct software development and maintenance. As part of it, configuration management

includes identification of systems’ configurations at distinct points in time in order to

control their changes, maintain their integrity and traceability throughout their life-cycle.

The above mentioned topics within the software life-cycle call for significant levels

of methodological and tool support. Contemporary tools cover both the engineering and

managerial aspects. They support creating various software artefacts, and automate

transition from requirements to design, code and tests. On the other hand, software

project managers can introduce dedicated tools that support organization of software

teams and facilitate progress reporting and controlling.

In general, software systems are characterized by high and constantly growing

complexity. This continuous growth cases the need to improve and further develop

existing methods, languages and tools, but also to propose new ones. In this monograph,

we report selected advancements in this area. The monograph covers topics starting

from requirements management, to software design and implementation. First, it ap-

proaches these topics as parts of an overall engineering process that has to be managed

efficiently. Then, it presents methods to automate translation from initial (requirements-

level) artefacts down to design artefacts and code. Finally, it focuses on applying specif-

ic techniques to the currently predominant embedded and web systems. Although the

focus of the monograph is mainly scientific, it includes some reports concerning practi-

cal applications.

10

Part 1 is devoted to software management. In its first chapter, Marek Majchrzak

and Łukasz Stilger report on their experience concerning introduction of the Kanban

methodology into an automotive software project. Kanban is a managerial method

originating from Japan, with the emphasis on just-in-time delivery. Authors argue that

in numerous software projects boundaries between traditional and agile approach meth-

ods disappear and that they require continuous scheduling of tasks without dividing

them into sprints or strict project phases. Moreover, customers expect more flexibility

and responsiveness from software vendors. To achieve better results in this field, au-

thors used Kanban, in particular different Kanban boards and stakeholders. They de-

scribe its main advantages, ways to improve customer cooperation and stakeholder

relationships, visualisation of task statuses and risk management.

In the second chapter, Aneta Poniszewska-Marańda and Rafał Włodarski report on

adapting Scrum in the context of academic education. Scrum is the most widely used

agile process framework for software development. It is iterative as well as incremental

and defines a flexible and holistic development strategy where developers work in co-

herent units. It enables them to self-organize by encouraging physical co-location or

close online collaboration and daily face-to-face communication. The key factor is the

recognition that during a project, requirements may be changed by customers. Scrum

aims at maximizing the units’ ability to respond to new or modified requirements and to

deliver conforming software quickly. This chapter is specifically devoted to the issue of

Scrum adoption in the academic setting in case of specific requirements.

In the next chapter, Mariusz Postół discusses agile management of research projects

in the context of contracts. Agile management approaches guide software development

projects towards valuable outcomes and take into account unpredictability of project

development. The author proposes to apply such approaches to high risk innovative

research projects based on fixed-price contracts. He proposes also a methodology based

on Scrum and supporting tools, which allows one to harmonize and embed agile princi-

ples as contractual rules. The discussion is based on a corresponding case study.

The last chapter of this part, authored by Krzysztof Wnuk and Emilia Mendes, is

devoted to a literature review concerning project management perspective on software

value. The starting point is the claim that companies, in order to remain competitive and

to grow, have to change from cost-based decision-making to value-based decision-

making in a way to maximise the software value and the overall value creation. The

objective is to complement and expand an existing classification of value and other

aspects within the context of product management and development. The authors identi-

fy nine primary studies in two snowball iterations and derive three categories: finance,

risk analysis and process improvement based on value identification.

Part 2 of this monograph is devoted to software modelling and code generation. It

begins with chapter 5, authored by Zbigniew Huzar and Małgorzata Sadowska, propos-

es the creation of complete business process models. The authors notice that the Stand-

ard Business Processes Modelling Notation neglects modelling of data and information.

Therefore, they define a compound model aimed to integrate BPMN diagrams with

UML diagrams describing data structures. Based on an analysis of BPMN models with

respect to their internal consistency and completeness in the process of requirements

elicitation, the authors propose a business model based on the integration of BPMN

 11

with UML class diagrams and state machines. A simple example illustrating the com-

pound model is worked out and evaluated.

Chapter 6, the second of this part, authored by Bogumiła Hnatkowska, is devoted to

automatic translation of ontologies written in Sumo to UML. Ontologies are treated as

the source of domain knowledge. The author notices that ontologies can be extracted

and used to create domain models. The extraction process can be supported by tools that

enable searching for relevant notions in an ontology and to automatically translate se-

lected elements to other notations. The chapter presents a proof-of-concept tool for

translating ontologies expressed in Sumo to UML. This tool shows that such transfor-

mation is feasible and, under some conditions, can produce high quality, consistent,

correct and complete models.

The topic of the seventh chapter is a pattern-aware method transforming Platform

Independent Models to Platform Specific Models. Dariusz Gall and Anita Walkowiak

describe a method to transforms structural and behavioural aspects of PIM models into

PSM models, with implementation details for the Java platform and show how to gener-

ate system implementation. The described method arranges the ingredient transfor-

mations, each of them with own execution parameters, into a transformation chain. The

authors argue that the resulting transformation chain can be seen as a specification of a

software architecture satisfying selected requirements.

This part ends with chapter eight, which addresses the problem of separation of

tightly coupled concerns with the help of generic program representations. Separation of

Concerns and genericity are fundamental principles allowing one to better manage

software complexity during the software life-cycle. Some of the concerns identified at

the concept level can be separated during the design or the implementation phase

through modularisation and other techniques such as AspectJ, AHEAD or MDSOC.

Whereas other concerns may not be so easily separable due to complex interactions with

the rest code. In this chapter, Stan Jarząbek and Kuldeep Kumar show that generic pro-

gram representations can not only avoid repetitions and consequently simplify programs,

but also can enhance the visibility of inseparable concerns. They offer a weaker, never-

theless useful, form of Separation of Concerns. The authors explain dependency be-

tween these two principles and argue that there is an overlapping area where the goals

of the two principles, as well as means to achieve them, are the same.

Part 3 of this monograph is devoted to embedded and network systems. In chapter

nine, Sławomir Samolej and Tomasz Rogalski discuss the development of an experi-

mental real-time pitch angle control application following the ARINC 653 and ARINC

664 standards. The authors describe the concept of Distributed Modular Electronics and

explain the ARINC 653 specification. They report on developing and evaluating an

application of ARINC 653, which is a real-time avionic control system. They consider

specific timing parameters, built-in self-testing procedures and final system tests.

The next chapter is about improving dependability of embedded software systems

using a framework called Fault Bypass Modelling. Fault injection techniques are widely

used to test dependability in case of hardware electronics and software systems. Increas-

ing complexity of embedded software systems, in particular in the automotive sector,

has driven the use of Model Based Development and of virtual test environments to

construct and test designs before code generation. In this chapter, Rakesh Rana,

Miroslaw Staroń, and Christian Berger argue that fault injection techniques can be ef-

12

fectively used for assessing and thus increasing the dependability of embedded software

systems. They analyse a problem that arises when fault injection is used during virtual

simulation of such systems and evaluate the Fault Bypass Modelling framework as a

potential solution to this problem.

Chapter eleven discusses a process that leads from an academic project to produc-

tion software based on the Java web-tier Content Management System application.

Jarosław Wojciechowski identifies the aspects of tiered applications which are essential

in case of production-ready software. The author uses an example of custom techniques

for functional solutions like multi-hierarchy, multi-domain operability in application

performance gain practices. These were applied in a web-tier Content Management

System application developed and used at the Lodz University of Technology.

Piotr Kosiuczenko and Michał Śmiałek

I. Software Management

Chapter 1

Experience Report: Introducing Kanban

into an Automotive Software Project

1. Introduction

Lean thinking is important because it can dramatically reduce error rates. It has

been shown that when applying this approach in the manufacturing or in service organi-

sation, the productivity has at least doubled. Moreover, this method also significantly

reduces delivery time for new products and decreases overall costs [14,9].

We shall also describe 2 software projects in the automotive industry, which have

employed the Kanban technique in an evolutionary way. In each of these cases, Kanban

was used to optimize a different process and was motivated by other business problems.

However, the mutual characteristic was the simplification of processes and evolutionary

adaptation of both the developer teams and the collaborating client teams.

2. Lean Software Development

The principles of Lean thinking focus on value added for the customer [6]. By removing

the unnecessary processes, activities and artifacts, and on the other hand organizing

work as a continuous flow, which recombines labor into cross-functional teams dedicat-

ed to that activity and constant improvements across the entire company we have been

able to develop, fabricate and sell with half or less of the human effort, tools and overall

costs. By introducing ’Lean thinking’ and its associated style of operation, we have

been able to react faster and more flexibly to the ever-changing needs of our Clients and

the modern market. Lean thinking requires continuous learning, growth and most im-

portantly, commitment and understanding from the personnel of any level including

management.

Lean Software Development is the application of Lean Thinking to the software devel-

opment process. The Poppendieck and Poppendieck [16] illustrated how many of the

Lean principles and practices can be used in software engineering context. They have

proposed 7 principles eliminating and managing the waste in software development:

 EliminateWaste - Do only what adds value for a customer, and do it without

delay.

16 From Requirements to Software: Research and Practice

 Amplify Learning - Use frequent iterations and regular releases to provide

feedback.

 Delay Commitment - Make decisions at the last responsible moment.

 Deliver Fast - The measure of the maturity of an organization is the speed at

which it can repeatedly and reliably respond to customer needs.

 Empower the Team - Assemble an expert workforce, provide technical leader-

ship and delegate the responsibility to the workers.

 Build Integrity In - Have the disciplines in place to assure that a system will

delight customers both upon initial delivery and over a long period of time.

 See the Whole - Use measurements and incentives focused on achieving the

overall goal.

3. Kanban in Software Engineering

The name ”Kanban” originates from Japanese and could be translated as ”signboard” or

”billboard”. It is a flow-control mechanism for pull-driven ”just-in-time” production.

The idea behind Kanban is to execute Lean principles in practice.

David J. Anderson has defined [1] 5 Kanban core principles, which are mainly overlap-

ping Lean principles.

 Visualize the workflow - You have to understand what it takes to get an item

from request to completion.

 Limit WIP - Limiting work-in-progress implies that a pull system is imple-

mented on parts or all of the workflow. New work is ”pulled” into the new ac-

tivity, when there is available capacity within the local WIP limit.

 Manage Flow - The flow of work items through each state in the workflow

should be monitored and reported.

 Make Process Policies Explicit - The process needs to be defined, published

and socialized explicitly and concisely.

 Improve Collaboratively (using models & the scientific method) - The use of

models allows a team to make a prediction about the effect of change (or inter-

vention).

In IT projects, using ”Kanban” is becoming increasingly popular regardless of the pro-

ject stages or production methods. A very interesting aspect of this technique is that it

becomes an inside tool in both waterfall and agile processes.

Kniberg [7] points out that Kanban is less prescriptive than other agile methods like

RUP, XP or even SCRUM.

Scrum, XP and RUP are highly adaptive, but Kanban leaves almost everything open.

The only constraints are Visualize Your Workflow and Limit WIP which make it a great

tool for quick and effective workflow and process-management tool. Especially, in case

when prescribed rules and artifacts don’t fit the project’s needs. Scrum prescribes the

 The Project Management Perspective on Software Value: a Literature Review 17

use of timeboxed methods, but in the case of a support team or in the case of a fire-

fighting team, it is hard to plan tasks in a sprint timebox.

Figure 1. Lead Time & Cycle Time

 Metrics - the way to observing facts and finding bottlenecks 3.1.

In order to make decisions, the management of a given project requires capabilities for

adequate situation analysis [15]. This role is served by project metrics, correctly select-

ed criteria, according to which defined parameters can be observed.

A simple visualisation is a fantastic way of investigating the workings of a team and the

current state of progress. However, it is mainly employed in the day-to-day planning.

When more accurate analysis based on a larger volume of data is needed, it is crucial to

create metrics, or information-gathering schemes. Metrics are collections of updated and

adequately represented data used for problem identification and decision-making. The

key concepts in measuring work efficiency are:

 Lead Time: a total time measured from task creation until its finish. Lead time

takes into consideration all of the corresponding events between, both predict-

ed as well as unpredictable.

 Cycle Time: is the correct volume of work.

Figure 1 is used to portray these two concepts. It must be noted here that entry and exit

points for work units, as well as in-between points are defined in each project. The pur-

pose of both of these metrics is to show the current work efficiency and potential de-

crease in time and costs of delivering a valuable work unit.

18 From Requirements to Software: Research and Practice

4. Releated Work

Mattias Jansson, Operations Engineer at Spotify
1
, introduces [11] Kanban in the opera-

tions team as an answer to the growing number of different kinds of tasks. The team

before they started testing Kanban, noticed that although they were quite efficient, they

weren’t able to plan far in advance. The problem was, they were re-active and not pro-

active. The growing amount of ’urgent’ jobs from other departments always were more

important that the internal tasks and the context switching lessened the team’s effective-

ness. They realized that the company was growing faster than we could accommodate.

Soon after Kanban’s introduction, they’ve noticed that their lead times have become

shorter, they have gotten more internal tasks done, and the departments they interface

with have been happier.

Kniberg in his book ”Lean from the Trenches” [8] described PUST - a digital investiga-

tion system for the Swedish national police authority. Due to the project scale, the teams,

as well as the kanban boards, were divided into subsystems. Beside having WIP limits

in case of regular tasks, they also decided to limit the number of bugs reported in the

bug tracker. In case of blocker priority, the bug had to be fixed immediately, if less

important, it had to be replaced with an existing one from the top thirty, otherwise it

would be ignored. He claimed that such an approach not only allowed for effective

communication (lower number of bugs, highly prioritized bugs were immediately fixed

etc.), but also avoided long change control meetings to manage a long lists of bugs,

which would probably never be fixed anyway.

Ikonen et al. [5] conducted a study in the middle size project (13 developers) in the

R&D field. The investigation focused on the following project work aspects: documen-

tation, problem solving, visualization, understanding the whole, communication, em-

bracing the method, feedback, approval process, selecting work assignment. The pre-

sented results indicated considerable benefits of the Kanban technique including team

motivation and control over project activities. Most of the work aspects were positively

supported by Kanban techniques inside the Team.

Middleton and Joyce in their BBC Worldwide case study [13] showed that following a

Kanban technique introduction, the lead time to deliver the software improved over

37% and the number of defects reported by customers decreased by 24%. They noticed

much the same obstacles, which may occur after lean introduction connected with the

environment and work space as a tension within the existing corporate standards and

processes. Especially: office space designed inappropriately for Kanban boards, Kanban

and reduction of WIP won’t work with milestones and Gant charts, close team co-

operation with the customer may be seen as working beyond the remit and self manag-

ing team of specialist may be challenging to the managers.

They have noticed that the Agile approach, especially Scrum, has some similarities.

However, they also noticed that the Kanban technique and Lean have several ad-

vantages over Agile/Scrum approach. They claim that WIP limits and pull work model

1
 Spotify is a music streaming service for desktops and smartphones, which aims to provide a wide-

ranging music collection

 The Project Management Perspective on Software Value: a Literature Review 19

compared to Scrum Push and timeboxed approach, reduced delivery time and allowed

for software with better quality. They also noticed that the ownership and responsibility

of the Scrum ”impediments list” is diffused. On the other hand, Lean team because of

limited WIP and visualization on the kanban boards must solve the problem immediate-

ly if they are blocked. In this case, all staff members are obligated to eliminate the bot-

tlenecks.

In another case study by Middleton et al. [12] he analyzed a Timberland company prac-

ticing ”Lean thinking” for two years. They noticed many steps in their processes not

adding value. A survey among people in the company showed that the majority sup-

ported lean ideas and thought they can be applied to software engineering. Interestingly

only a minority (10%) was not convinced of the benefits of lean software development.

The company showed a 25% gain in productivity and time for defect fixing was reduced

by 65% - 80%. The response on the product released using lean development from cus-

tomer site was overall positive.

5. Discovering Kanban

In this section we shall describe two different approaches and two different perspectives

of Kanban introduction. In Project A
2
 2 Kanban has been introduced as a tool for deal-

ing

with unplanned tasks in Sprint. In Project B the main goal was to unblock communica-

tion in an extensive stakeholders structure.

 Project A 5.1.

5.1.1. Background

The system, under investigation, covers all aspects of car purchasing in one of the pre-

mium car manufacturers in Germany. The system was designed for experts and is being

used internally by customer. Basically, it allows buying, leasing or renting cars by cus-

tomer employees, institution or VIPs, management of car fleet and used cars reselling.

Currently the system consists of 2 main components. One is the new version of the

system developed as a modern web-based application. The second component written in

COBOL is the old system version, which is to be replaced by a new version step by step.

Both systems are always available and data is synchronised between them in real time.

The project uses the Scrum framework with certain small additional procedures, like

additional Scrum of Scrums meeting and PO-Team meeting. A typical Sprint takes 3

weeks, some of the user stories (US) are approved during the sprint, some at the end -

during the demo. The majority of US are confirmed and tested by the PO-Team, howev-

er in the case of larger epics there are more people involved, including a number of

external IT specialists

2
 Due to a commercial agreement, the project names have been anonymous.

20 From Requirements to Software: Research and Practice

5.1.2. A Timeline

The old system version has been developed since 1990 using waterfall software devel-

opment model. The new version of the systems was developed at the beginning also

using the waterfall software development model. Development started in 2010. First

release after 16 months showed that we were not able to integrate with the old system

and we did not cover minimal end user needs. In 2012, it was decided, that in order to

improve cooperation between 2 systems and ensure faster delivery, new requirements

for the whole project will be developed as one Scrum project. After final transition in

2013, the entire team as well as the customer were using the aforementioned Scrum

framework. Currently, a new version is being released quarterly. In case of urgent re-

quirements we will provide minor releases extending the latest production version.

5.1.3. A Timeline

The Team consists of 35 persons. Around one-third of them are connected with the

project from initial stage. Approximately half of the workers have got several years of

experience in leading enterprise projects. The entire team is divided into 7 sub-teams

(see Figure 2), some of them are virtual. The team member could be assigned to more

than one team because of his/her function.

 JEE Development Teams (x3, DT) are responsible for the new system version,

they use Scrum. Each team has about 6 members and a Scrum Master.

 Host Team is responsible for developing old system in a Cobol technology.

The team consists of 5 members and Scrum Master.

 Fire Fighting and Support Team (FT and ST) consists of 6 members. In most

cases they are nominated in the sprint beginning from each development team.

The team is responsible for integration and production of bug fixing and for

providing 3
rd

 line support. Members of the team change every Sprint session.

 Cross Functional Team (CT) consists of technical leaders from each develop-

ment team and solution architects. Focuses on long-term technical and business

decisions. Designs new components and supports customer.

 Product Owners (PO) Team consists of 3 business architects focused on new

User Story development. They work and agree new functionality directly with

end users and major stakeholders within the organization..

Persons, who lack industry experience are used up to a 70% capacity in the initial few

months of the Sprint.The slack time is being used for internal project training provided

by experienced software developers and architects.

Project Teams are located in 3 different cities.This type of work has been organised in

accordance with the Distributed Scrum concept as described by Majchrzak et al. [10].

 The Project Management Perspective on Software Value: a Literature Review 21

Figure 2. Project A - Team Structure

5.1.4. Engineering Practices

From the very beginning, we were focused on XP techniques [4] which could be applied

in both the waterfall and then in Scrum framework:

 test-driven development (unit tests);

 clean code instead of code documentation;

 automated end 2 end (E2E) testing covering the user stories;

 continuous integration after each source code change, nightly build includes

long running e2e regression tests;

 source control software and rigorous configuration management;

 bug-tracking software (JIRA [2]);

 documentation in wiki (Confluence [3]).

This results in high test coverage. The team is able to provide a new release after each

sprint. Due to E2E testing, business and technical complexity, results are not always

stable. About 15% of the tests are failing regularly. The problems before release are

being checked manually in order to ensure that the problem reported occurs because of

new functionality or because of bugs. Every time a bug is found, it is promptly reported

in the issue tracking system.

5.1.5. Kanban introduction stages

The main impulses for employing Kanban were doubts the team was having in regard to

bug correction and new feature implementation, which had not been explicitly defined

during the sprint planning. It is worth noting that the problem did not consist only of

what and in which order a given task or mistake was to be corrected, but also a decision

determining the incorrect workings of an application, as well as the decision about who

would be the sponsor of a given change.

22 From Requirements to Software: Research and Practice

Step 1: Identify work to be done. The first step aimed at systemizing the volume of

work being done outside the sprint was to create one list of errors and problems from

various sources, and then organize it in the JIRA system. Within the project, because of

diverse users and conditioning, the aforementioned errors and queries could be called in

using many ways, i.e. by email, by telephone but also with the help of HPQC and Pere-

grain. From the developer’s perspective, many sources of those were impossible to

accommodate and respond to, much the same which decision had a higher priority.

Unified bug list wasn’t the right solution. Very quickly we have found the following

drawbacks:

1. A Developer had to arrange who would be the sponsor of change or error - fixing.

2. In the case of lack of symptoms, many tasks had the status of In Progress. It is

worth noting, that a developer was usually only assigned for approximately 2

weeks to the FT team. As a result of it, the said developer would have begun

many tasks (the work in progress was not defined or limited) and practically

would not complete any in real life. Then tasks would be returned to the ’To Do

list’ and repeated all over again. Consequently, some errors would wait for

weeks before being solved or rejected.

3. All of the agreements and contacts with PO and stakeholders were happening in a

chaotic way. From the point of view of each user group their bugs or tasks had

the top priority. Undoubtedly, it resulted in misunderstandings and also caused

additional arduous communication by email.

Step 2: Identify workstreams. The next step was to identify the workstream and WIP

arrangement. For instance, persons working on subjects connected with support re-

ceived their own boards or were able to use the common one, but their tasks were as-

signed with different colours. Similarly, persons working on errors (FT) would own

their own boards. Very quickly we noticed another problem emerge, this one connected

with the project characteristics. Some of the bugs had to be fixed using a different budg-

et, which meant for example that only 1 FTE
3
 could be assigned. Another problem was

the fact that a number of all errors were marked as a new feature (CR) and from the

project’s standpoint, they were then investigated within the in the scope of a different

budget and with the use of different resources. The constraints mentioned above re-

quired the introduction of additional Kanban boards. The question arose then concern-

ing the person who would make a choice between workstreams. Of course, we added

additional boards, where experienced developers or solution architects investigated the

issue and decided where it belonged.

Because of the large amount of boards, this approach might seem very complicated.

However, from the FT point of view, the ’To Do lists’ have been shortened and the

focus was only on bug fixing.

Step 3: Improve the communication. The introduced division between work streams

was optimal from the FT and ST point of view. On the other hand, from the manage-

ment’s and the client’s perspectives (PO-Team), the existing work streams did not al-

ways meet their needs.

3
 FTE - Full-time equivalent is a unit that indicates the workload of an employed person.

 The Project Management Perspective on Software Value: a Literature Review 23

Because of this, in order to improve communication and effective conduct of prioritiza-

tion meetings, we have defined a number of options which grouped the chosen work

streams, but still retained simplicity. For instance on the Figure 3 we identified Change

Control Board formed from Support Board and Change Request Board.

Unified bug list wasn’t the right solution. Very quickly we have found the following

drawbacks:

5.1.6. Results

After nearly a year since the introduction of the above process, we have conducted an

interview similar to the one suggested by Ikonen et. all [5]. In relation to the high com-

plexity of the project structure and different expectations, we have tried to get opinions

from each of the teams. Due to the fact that the main work stream is done in sprints, we

have focused only on selected work aspects.

Documentation. Dispersed exchange of information by email and arrangements during

several meetings have been replaced by cohesive comments within the scope of a given

task. They have allowed us to understand each given problem and the process in which

a decision was made. To a developer, it has become clear what and why needs to be

done. Member of the ST additionally states:

 Figure 3. Project A - Kanban Boards

”Documentation has been improved, there is no worry about losing parts of data.

Once something has appeared on a Kanban board, it will not be forgotten or

omitted and it will be equipped with the correct commentary serving afterwards

as a source of knowledge in similar problems. ”[ST]

Problem solving. The introduction of Kanban has allowed for easy task assignment to

suitable people in the correct order. In case of a developer or customer finding a bug or

requesting a new feature, he or she can easily issue a new ticket without the need for

24 From Requirements to Software: Research and Practice

consultation with the scrum work model and budget, which made it possible to continue

work without delays:

”It facilitates and provides a structure for works on error correction.”[FT]

”Developers are not blocked and know that the reported problem will be

proper classified and solved. They are not blocked by unplanned tasks and

could develop new user stories without changing the context. ”[CT]

Even though most of the team thinks that certain progress has been made, ST and CT

still see some room for improvement:

”Using Kanban has not solved all of our problems. Too much of a mess occa-

sionally still happens.”[ST]

In addition CT has pointed out that we have still problems due to a largely rotating

team:

”On the other hand we have to improve process of bug fixing itself. A task

once started does not always get completed before it is time for a developer

to leave the FT team”.

Visualization. The process of error fixing and CR management is much simpler and

more transparent from the team’s point of view. Bug statuses and workloads are always

visible. Each member can easily select a given board and then the related task:

”Kanban boards look much better and provide more informations than a long

bug list.” [Scrum Master]

The Team and stakeholders understand how the support and bug fixing process looks

like:

”Once upon a time, I found it difficult to tell the way in which we worked. A

project seems to be much more mature, once it has become clear as to how

the given processes function.”[ST]

Visualization helps also people working on regular sprint tasks, they claim that:

”It is easy to observe whether a person is working to solve a problem, which

has blocked us and what is its priority.” [DT]

Communication. Internal communication between teams and the PO has improved

dramatically. Instead of having dedicated meetings to discuss each critical error, regular

meetings for the selected work streams have been initiated:

”The number of meetings has grown, however, they have become shorter and

allowed us to effectively manage the tasks on given boards.”[CT]

From the team’s point of view, information concerning prioritizing error-correction and

the details concerning them have been set in place. On the other hand, from PO’s point

of view, communication with the development team has been improved:

”The Client knows who to speak to in regard to a given task and when to ex-

pect the solution of a said error.”[FT]

Another equally important aspect is the option of regular progress monitoring.

 The Project Management Perspective on Software Value: a Literature Review 25

”We can see immediately what is the status of the work. I don’t have to inter-

rupt people and ask what they are doing.” [Scrum Master]

Approval Process. The basic advantage of the defined process was the improvement of

work stream choices for new tasks:

”... it easier to verify incoming bugs and assign them to proper work stream.”

[Solution Architect]

Additionally, the introduction of rules concerning the flow and identification of spon-

sors responsible for error-correcting has improved support work:

”In case if the task cannot be easily solved, because we have to deal with a

non- trivial bug or simply with a new feature, we can easily move it to anoth-

er board.” [Support Team]

Despite the above improvements, the team has still seen the need for improving the

process:

”Unfortunately, as of now, we have not been able to establish a correctly-

functioning approval process. We need another state (column) - Verified.

Fortunately we have a proper release process, we can see on the Kanban

board what got released and what didn’t.” [Scrum Master]

Selecting Work Assignment. Through a close interaction with the Customer and PO,

we have been able to set our priorities right, which in turn has allowed for optimal task

realization by the team:

”Simply, you take the first task from the first column. You don’t have to

search tasks or ask others.”[Scrum Master]

Taking into account the aspect of a budget for particular error types, the choice of a task

is clearly sensibly from the Team member’s point of view:

”Different boards helps us in finding bugs from different work streams.” [FT]

”Tasks are splitted into work streams and could be easily selected based on

priority order” [DT]

 Project B 5.2.

Project involves the manufacturing of production software in a large automotive con-

cern. A part of software supports the direct steering of car production in three separate

stages: body construction, paint shop and assembly. The steering systems are critical,

because each potential software error generates relatively expensive problems. The said

software is employed in several dozen factories belonging to the aforementioned auto-

motive concern. The goal of this project is the delivery of services within a specified

time frame and with specified availability, namely the development of new functions

and the support of current and existing functions in the production environment.The

support is limited to the most difficult problems requiring changes in software or specif-

ic changes in the system configuration.

26 From Requirements to Software: Research and Practice

5.2.1. Composition of Team

Due to the massive system function complexity, the team has also become extended.

Taking into account various functions and tasks, the project has been divided into the

following teams (see Figure 4):

 Feature Team(x4) - these are people directly responsible for software manufac-

turing. The team consists mainly of Programmers and Testers. Each Team is

responsible for specific business components.

 Crossfunctional Team - responsible for the infrastructure and continuity of pro-

ject functioning in relation to technical data, namely integrating both Client’s

and contractor’s networks as well as supporting the build and configuration of

management processes.

 Governance Team - responsible for the management and client co-operation

realizes key decisions concerning the project. It is involved in all the existing

aspects of project management including change and risk management

5.2.2. Kanban introduction stages

The deployment of an agile approach is much more difficult within the realms of a large

organization and extensive stakeholder structure. The above project description does not

focus on organizational or business limitations, instead focusing on the employment of

the Kanban techniques. Because of critical and limited functionality, all of the process

changes have had to have been introduced carefully, that is with risk management,

which is an indispensable element of the empirical project approach.

Figure 4. Project B – Team Structure

 The Project Management Perspective on Software Value: a Literature Review 27

Step 1: Establishment of the common workflow. In the initial stages, the arrangement

caused each of the Teams to function according to their own rules and using their own

individual work flow. The following caused difficulties pertaining to the correct defini-

tion of general state of work, i.e. defining a completed task (Definition of Done), report-

ing on critical productive errors (escalations) and seeing the fully complete picture of

work in the entire project. Having standardized the work flow, it became do-able to

create a root for visualising the Kanban board. In its initial stages it comprises of every-

day work (daily business), meaning the current tasks. It consists of the following stages:

 T-Shirt sizing: an initial assessment of a task, which is a relative description of

size that is an outcome of complexity, uncertainty and repeatability In this

stage, the estimates are not precise and the analysis itself should not exceed 4

hours. Possible values are: S - small, M - Medium, L - large and XL - extra-

large.

 Problem analysis: in this stage a detailed analysis occurs based on an earlier es-

timate. The purpose of this stage is the definition of scope of work and its costs.

 Development: in this stage realization occurs on the basis of an earlier analysis.

The purpose of this stage is the engineering of a registrable change in software.

 Deployment: the final stage is the employment of software change and in the

majority of cases this is the most complex process. The goal is the delivery of

change within the production environment.

It is possible that a problem gets solved on each of these levels, which then completes

the process.

Step 2: Visualization processes. Visualization is the best way to achieve common

understanding the state of the project, the best way to keep shared vision. We can find

the bottlenecks only when everything is measured and visualized to the whole team. The

reality of communication is that every stakeholder can have different interests. In this

phase of introducing Kanban, it became crucial to start collaborating in the same ”lan-

guage”. A Kanban board has been created on the basis of an earlier study of the said

workflow. (see Figure 5).

Figure 5. Project B – Team Structure

28 From Requirements to Software: Research and Practice

Visualization is not only communication improvement, it is also a key element to

achieve shared vision and promote it around the project. After the introduction of the

visualizations following behaviors were noticed in the teams:

 the processes were described and changes were continuously supplemented,

 the board was continuously adapted,

 the processes were always visible to all members of the the team and they were

proposing improvements (feedback loop).

Step 3: Introducing the culture of self-improvement. Project approaches based on

nimble philosophy are extremely difficult to implement for multiple reasons, among

many of which are the requirements for experience and courage. A given situation can

be much simpler if there exists an environment open to the Agile and Lean thinking. It

is fair to say that their deployment is not possible without the culture of change and

constant improvement in place.

In the process of change within a large organization, one must not forget about socio-

logical processes. One of such phenomenon is the Adoption Curve (see Figure 6) [17].

It is precisely this model that became used in the process of employing change to the

project and its close environment. The specific technique used was, among others, the

selection of the ’so-called’ Change Ambassadors (Early adopters), who were recruited

from the management of selected feature teams. It was this group, who was the main

communicative target in relation to Kanban deployment techniques. In the aforemen-

tioned ’Early Majority’ means a Team.

Instilling the Lean culture allows the use of techniques such as Kanban. Simultaneously,

an organisation promotes an adaptive approach on a wider scale, moving far beyond the

scope of this project.

Step 4: Managing improvement from the team. The Coach is a very important role in

this operation and his position is not to be underestimated. However, his role is to guide

the Team towards learning the process of coming to correct conclusions. Just as a parent

bringing up a child teaches it to walk and then allows it to reach full independence, so

does the Team Coach by pointing out specific problems and then teaching the Team

members a lesson on independence.

Figure 6. Innovation Adoption Lifecycle

 The Project Management Perspective on Software Value: a Literature Review 29

The first problem, which has been noticed thanks to visualisation and the common

workflow, was the lack of comprehensible understanding for the Definition of Done

(DoD). In the beginning, each Team has defined their DoD in their own way. Unsurpris-

ingly, it has invariably led to serious misunderstandings during the realization of said

agreement, especially towards the final stages of the project.

Second of all, certain knowledge limitations have became apparent within the Team.

The Kanban board has made it immediately and painfully aware as to which module

lacked the necessary knowledge, where fewer tasks existed and where there was poten-

tial for certain key moves. Through the act of standardizing the workflow and pro-

gramming it correctly in the JIRA, we have succeeded in improving both the executive

documentation procedure as well the communication regarding production difficulties:

 documentation concerning current problems consists of the necessary meta in-

formation i.e. contact persons, references to other existing documents (i.e.

change request)

 summary of existing problems is being documented in a uniform manner.

Step 5: Introducing the processes to the Customer. Now as a result of the other

changes, we have become able to work with the process improvements. But how can we

work on improvements together with the Customer? The first step was to visualize a set

of data. A special Kanban board with set of data has been prepared. There are special

instances of Kanban boards for a specific customer. Special cases for each group of

stakeholders:

 IT Department: the board shows all scope and parameters. With the complete

overview in front of him, the customer can easily decide and prioritize work.

 Problem management: this group on customer side is responsible for the inter-

nal customer processes, e.g. ITIL [18]. With this special case of the Kanban

board, they can proceed relatively fast aligning our work to their processes.

 Local IT Departments within the factories. They have used our software direct-

ly and plan on its upgrading in the future. They have used special boards in-

cluding details limited to their scope of interest (only pertaining to issues from

one particular factory).

5.2.3. Results

One of the most significant consequences of Kanban introduction is the ability to meas-

ure process, as an example quoting such defined metrics as:

 an increase in the number of called-in tickets relative to the closed cases (see

Figure 7),

 a possibility to measure the average time for closure and costs of fabrication

(Lead Time i Cycle Time),

 cyclical report for shifts in the original estimate, which meant a comparison of

adequate work estimation in the T-Shirt sizing phase to the actual volume of

30 From Requirements to Software: Research and Practice

work being done. The report has made it possible for an early detection of the

most incorrect estimates and their causes

 the quality of task documentation coming from the Client is also being meas-

ured, which in turn has allowed for an introduction of multiple improvements.

The end effect has been an improved communication with respective Client

departments.

Additionally, SLA values (Service Level Agreement) are being measured within the

scope of the said project based on the previously agreed parametres. The achieved SLA

may shift up to a certain extent. The following SLA indicators exist in the project:

 Reaction time meaning from the moment a work unit was created until the ac-

tual work has begun (Early analysis),

 Time of the initial analysis (T-Shirt sizing).

In the analysis phase (Problem analysis, Development i Deployment), a high level of

vagueness has made it impossible to introduce SLA that would measure up an end of

work. An exemplary cumulative chart (see Figure 8) has highlighted the piling up of

tickets in the analysis phase for the final period between September to November. Such

a visualization has very much given credibility to reports for the Client.

Figure 7. Created vs. Resolved Chart

Figure 8. Cumulative Flow Diagram

6. Summary and Key Observations

In a progressively larger number of IT projects, one can easily notice a trend to-

wards process and actions optimization within the scope of executed projects. Both the

Development Teams and Clients have spotted flaws in processes imposed by diverse

methodologies. The said ones are in many cases over the top, worthless and unnecessary

and their existence is only justifiable solely on the merit of each selected approach.

Moreover, frequently chosen software development methodologies do not encompass

certain much needed processes.

Although the Kanban technique is not a subject of frequent analysis and has not

been as promoted as the Scrum or XP ones, it has become more and more usable in IT

projects as one of the tools of ”Lean thinking”. It can be used with positive results in

 The Project Management Perspective on Software Value: a Literature Review 31

each project type regardless of whether it might be a ”Agile” or ”Waterfall” style opera-

tion. It is worthy of a notice that this simultaneously basic and at the same time intuitive

mechanism is a powerful tool allowing for an easy optimization of nearly every activity

and process within the software projects. In both cases, we have seen noticeable profits

both on the side of our Team as well as on the Client’s side over a relatively short peri-

od of time.

The most important aspects of the aforementioned are undoubtedly visualisations,

regular process order and the creation of a cooperative platform, which can be easily

modified and adapted to any given target group.

Whilst analyzing the consequences of Kanban deployment another perspective has

emerged. Taking into account the human factor, It is noticeable that Kanban’s use trig-

gers a gradual self-improvement from within each Team, a sort of evolutionary step

towards the betterment of documentation and fabricating processes. Hence, unlike

something forced upon us by the management or outside specialists, the Kanban results

in an all-natural, symbiotic and adaptive process.

7. About Capgemini and Nearshore Center Wrocław

With more than 130,000 people in 44 countries, Capgemini is one of the world’s

foremost providers of consulting, technology and outsourcing services. The Group re-

ported 2012 global revenues of EUR 10.3 billion. Together with its clients, Capgemini

creates and delivers business and technology solutions that fit their needs and drive the

results they want. A deeply multicultural organization, Capgemini has developed its

own way of working, the Collaborative Business Experience and draws on

Rightshore® , its worldwide delivery model.

Nearshore Center of Capgemini exists in Wroclaw since 2004, and is thus part of

the worldwide Righshore® of delivery centers. More than 650 IT experts currently

work in Wroclaw delivering high quality services in the areas of software development,

software package implementation and application life cycle services to German-

speaking clients.

Capgemini in Poland employs more than 5000 consultants and IT as well as busi-

ness process experts. Centers for IT and business process outsourcing services exist in

Wroclaw, Krakow, Katowice and Opole with the main office serving the Polish market

based in Warszawa.

8. References

[1] David J. Anderson. Kanban: Successful Evolutionary Change for Your Technology Business. Blue Hole

Press, April 2010.
[2] Atlassian. JIRA Documentation, 2014.

[3] Atlassian. Specification - Confluence Advanced Editor, 2014.

[4] Kent Beck. Embracing Change with eXtreme Programming. Computer, 32(10):70–77, 1999.

32 From Requirements to Software: Research and Practice

[5] Marko Ikonen, Elena Pirinen, Fabian Fagerholm, Petri Kettunen, and Pekka Abrahamsson. On the
Impact of Kanban on Software ProjectWork: An Empirical Case Study Investigation. In Engineering of

Complex Computer Systems (ICECCS), 2011 16th IEEE International Conference on, pages 305–314.

IEEE, 2011.
[6] Daniel T. Jones James P.Womack. From lean production to the lean enterprise. Harvard Business

Review, apr 1994.

[7] Henrik Kniberg. Kanban and Scrum - Making the Most of Both. Lulu.com, 2010.
[8] Henrik Kniberg. Lean from the Trenches: Managing Large-Scale Projects with Kanban. Pragmatic

Bookshelf, 2011.

[9] Julia Koplin, Stefan Seuring, and Michael Mesterharm. Incorporating sustainability into supply
management in the automotive industry - the case of the Volkswagen AG. Journal of Cleaner

Production, 15(11):1053–1062, 2007.

[10] Marek Majchrzak, Lukasz Stilger, and Marek Matczak. Working with Agile in a Distributed
Environment. In Practice Software Engineering from Research and Practice Perspective (Eds. Lech

Madeyski, M. Ochodek), Scientific Papers of the Polish Information Processing Society Scientific

Council:41–54, 2014.
[11] Mattias Jansson Michael Prokop. Use of kanban in the operations team at spotify. InfoQ, sep 2010.

[12] Peter Middleton, Amy Flaxel, and Ammon Cookson. Lean Software Management Case study:

Timberline inc. In Extreme Programming and Agile Processes in Software Engineering, pages 1–9.
Springer Berlin Heidelberg, 2005.

[13] Peter Middleton and David Joyce. Lean Software Management: BBC Worldwide Case Study.

Engineering Management, IEEE Transactions on, 59(1):20–32, 2012.
[14] Taiichi Ohno. Toyota Production System: Beyond Large-Scale Production. Productivity, Cambridge,

MA, 1988.

[15] Kai Petersen and Claes Wohlin. Measuring the Flow in Lean Software Development. Software: Practice
and Experience, 41(9):975–996, 2011.

[16] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile Toolkit. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
[17] Everett M Rogers. Diffusion of Innovations, 5th Edition. Simon and Schuster, 2003.

[18] Arraj Valerie and Compliance Process Partners LLC. ITIL®: The Basics. OGC. Whitepaper, jul 2013.

Chapter 2

Adapting Scrum Method to Academic

Education Settings

1. Introduction

In the field of software engineering, every project should be supported by a particular

development method in order to be successful. In consequence in the past years this

field has not been shy of introducing different methodologies, more and more distin-

guishable from the traditional approach presented by the Waterfall model or Spiral

model. To address their main drawback of being heavily regulated and often not incre-

mental, new means, called agile emerged. Agile project management is a style of project

management whose focus is placed on iterative and incremental development and early

delivery of results. It emerged in the mid-1990s and caught the attention of project man-

agers as well as customers and became widely acclaimed and employed in different

branches of the industry. While similar problems are usually encountered during im-

plementation of students’ projects, little attention was paid to applying software devel-

opment methods in academic setting thus far.

Agile approaches emerged as a response to the need of new approach of project

management and it is beneficial to familiarize one’s self with its history and aim. Water-

fall and other traditional methods which put emphasis on up-front requirements capture

and design are not likely to be successfully applied by student, who usually do not know

well the environment in which they have to work, they have little knowledge of the

imposed problem and are supposed to learn during the whole process of project devel-

opment. Moreover, their initial plans and assumptions look feasible on paper, however

turn out to be troublesome in practice, very often causing technological difficulties and

require a re-design and choosing a different direction to solve the problem. Intuitive

resolution of these issues would mean applying a method from agile family, which deals

with aforementioned obstacles by providing maximum flexibility and appropriate con-

trol.

The presented paper focuses on the Scrum method, one of the most widely used ag-

ile process frameworks for development of software [13]. This method was adapted for

certain requirements to be applied in the academic setting. Moreover, a complementary

tool that students could use to employ Scrum practices in the creation of their university

courses projects was also developed. The paper is structured as follows: section 2 gives

the outline of agile software development and Scrum framework, while section 3 deals

with the adaptation of Scrum method the academic needs and requirements, presenting

how to modify Scrum’s core to make it suitable for students’ projects and research work.

34 From Requirements to Software: Research and Practice

2. Agile Software Development and Scrum

Using outdated management and development approaches can cause problems, pro-

ject failures and in consequence financial losses. Fortunately, the growing problems

have been recognized over the past decades and new, so-called lightweight development

methods emerged in the mid 1990s. Their main goal was to oppose heavyweight meth-

ods like Waterfall, which were regarded as heavily regulated, regimented and overly

incremental.

The values that agile process proponents adhere to are: firstly, the importance of the

relationship, spirit of cooperation and belonging of software developers [1]. Human

role in the process of development is far more significant and this of tools and institu-

tionalized processes. What it means in practice is that people can respond quicker and

transfer

ideas more efficiently with direct interactions rather than through reading and writ-

ing documentation. Secondly, the crucial point of agile development is to continuously

provide tested and working software or its modules. Releases are carried out frequently,

varying from even once a day to once a month. Agile methods embrace the idea of sim-

plicity, where no more code is produced than necessary and no documents attempting to

predict the future are created, as they inevitably become out-of-date. Third, participa-

tion of the client in the project and close cooperation with the development team is

critical and more important than strict terms of a contract. A client whose needs are well

understood and addressed is a satisfied client and in the end the expected business value

is delivered along with a fulfilled contract. Fourth, based on the assumption of project

transparency, where both software developers and customer representatives are well

informed and have necessary knowledge and skills to make changes to the predicted

plan as the development of the project progresses.

Scrum is one of the members of Agile family, consequently it is iterative and in-

cremental, with work being structured in entities called Sprints [3,13]. They are com-

monly a couple of weeks long, not exceeding a month’s time. Moreover they are of

fixed duration, finishing at a specific date, even if the planned objectives have not been

met. Each spring begins with a spring planning meeting, where members of a cross-

functional team select customer requirements from a prioritized list and grant to accom-

plish them by the end of the sprint. As a part of the development process, every day the

team carries out a daily Scrum meeting to briefly discuss their progress and re-plan their

work (Fig. 1).

3. Scrum in Academic Environment

A handful of IT corporations has had success with Scrum method, however not much

attention has been paid to applying it in academic setting. While characteristics of eve-

ryday work differ significantly in commercial industry and research fields, adopting

Scrum’s traditional proceedings may yield promising results as the point was proven by

numerous universities.

 Adapting Scrum Method to Academic Education ... 35

 Motivations for Using Scrum in Academia 3.1.

Owing to its overwhelming popularity in management of IT projects in recent years,

Scrum is familiar to many teachers in academia and to most of Software Engineering

course participants as it is introduced to the students as an example of a prominent agile

methodology. But there can be done much more than just presenting a theoretical back-

ground, which will fade away from undergraduates’ memories as soon as they finish the

course in question.

Figure 1. Model Scrum process [12]

Fruitful results can be seen in study on University of California where Scrum was

applied as a part of the practical assignment in Software Engineering course [5]; Uni-

versity of Duisburg-Essen used Scrum to guide Academic Game Development course

[6] while staff from University of Maryland managed a group of researchers by the

means of slightly modified version of Scrum [7]. These and other examples motivate to

provide an adjusted set of Scum principles and practices to make it applicable to stu-

dents’ curriculum projects by first learning and getting practical experience within a

Software Engineering (SE) course. Unfortunately, typical SE course is highly theoreti-

cal and its objective is to teach software development process, including all phases

involved – requirements gathering, design, implementation, testing and quality assur-

ance. In most cases however no chance to practice creation of software according to

good practices is given to the students.

Limited time of every course as well as resources of each participant create the

need for adaptive approach that enforces teamwork and at the same time is a great op-

portunity for students to learn. Hence Scrum, a flexible and light project management

method is advised to carry out the practical part of a course, since project development

is the best way of knowledge consolidation. Graduate with hands-on experience with

project management methodologies is more attractive to potential employers, who apply

modern frameworks to manage the software projects as a way of reducing costs by

optimizing employees’ time.

Other challenges that students face during the development of their projects is lack

of work organization as they are not prepared to manage and be managed [8,9]. There is

36 From Requirements to Software: Research and Practice

much room for improvement in the team working department and fair task division

abilities within the project group. Yet another issue to be addressed is that scope of

project requirements is often vague, as the instructors tend to only give in overall idea of

what the expected output is, but do not provide the necessary details. Figure 2 presents

the major problems that cause a ”bottle neck” in students productivity.

Figure 2. Major reasons for students’ projects failures that are to be addressed with introduction of ”academic”

Scrum

Proposed means of adapting Scrum to academic setting will try to resolve the

aforementioned problems and furthermore to have positive influence on the aspects of

[6]:

 Teamwork, which it is vital in any project management as the development is

carried out by multiple members and is not assigned to a particular person.

This includes aspects of communication, reliance, and conflict management,

thus evolving important soft skills.

 Flexibility, as schedules of students and their availability to work on a particu-

lar subject change constantly. It also concerns the issue to react on changing

requirements in awareness of the general objectives.

 Empowerment, which makes individuals more confident regarding their capa-

bilities. Instead of a central decision-making, everyone’s involvement and

competence has impact on decisions made, which results in higher motivation

and commitment.

 Productivity, which is crucial in respect to both the limited time frame as well

as to the comprehension of tasks to be handled within the development process.

 Scrum Roles 3.2.

There are three primary roles to be divided among the course participants: the role of

Product Owner, Scrum Master and the Development Team. This is the aspect of Scrum

that varies significantly between the industry and academic setting. Firstly, there are no

external stakeholders or specialists in development/management/marketing domain. In

essence, the course professor/teacher masters the subject he conducts. On top of that, a

 Adapting Scrum Method to Academic Education ... 37

person with a Scrum certification that normally takes the role of a Scrum master can

only be dreamed of in most of cases. On the other hand, there are more than enough

resources to form a development team whose typical size is 6 to 9 persons; in fact a

couple of separate teams probably will be assembled depending on the amount of course

participants.

The proposed solution, which takes into account the limited resources, is for the

course monitor to play the Product Owner, one of the students to be a Scrum Master and

the Development Team to incorporate other students.

There have been deviations in role dispersion in real life studies of applying Scrum

in academic setting, e.g. the student would take on the role of Product Owner [5] or the

professor would play a Scrum Master [9]. The suggested division of roles was proved to

be successful in numerous cases [6,8,11] and seems to be a reasonable way to manage

what a course professor has at hand. While a Scrum Master should be savvy about the

technology and preferably possess a Scrum Master certification, evidently that is not the

case in a university class. As scrum master’s main occupation is enforcing Scrum’s

rules and making sure the team understand them and follows them carefully, it is pro-

posed that a student preferably with a prior experience in software development accord-

ing to Scrum practices would take up the role. This is more likely to happen in a gradu-

ate course, when students have already completed internships or other form of profes-

sional activity. Nevertheless, in the opposite case, a person that proved to be responsible,

collaborative and committed ought to be chosen, as these are traits of character that a

good Scrum Master possesses.

J. Schild and R.Walter [6] suggest that a new Scrum Master should be chosen for

the duration of each Sprint. It is a good chance for a bigger number of students to fully

grasp the objectives of this role and learn how to put the rules and practices into action.

This solution however, comes with certain risk as not all of students have natural capa-

bilities to take on that role. Finally, it is necessary to mention that a Scrum Master is

still expected to work with other students on the development of the project, unless

there are numerous team members and insufficient workload.

Lastly but not least importantly comes the role of a development team member,

which naturally will be taken up by the students. The principle of industrial version of

Scrum advocates the size of a team to fit between three to eight persons. While this rule

might be preserved in the academic setting, a lower bound of this range is suggested.

The development team of 6 people was chosen in most of the successful cases of Scrum

usage in academic courses [5,6,8], hence the proposed solution retains this exact size of

a team. It should be noted though, that the course teacher might concede possibility of

adjusting the scope of the project and the required workload for its successful comple-

tion, so that it reflects the team’s capabilities.

3.2.1. Scope of Responsibilities

It is not just the dispersion of roles that differs in both industrial and academic variants

of Scrum. As each role comes along with a set of responsibilities and activities to per-

form, further adjustments need to be made.

38 From Requirements to Software: Research and Practice

Whereas in the existing cases where Scrum was used for management of the stu-

dents’ projects [5,6,8], it was the students that came up with ideas for the project and

were expected to have a clear vision of the end result, hence create a Product Backlog;

in the proposed solution a different approach is taken. Following the classical approach

of Scrum, it is the Product Owner that takes the full responsibility of the Product Back-

log, in consideration of his knowledge of the teaching subject and years of experience. It

is highly doubtful that students are adept to come up with a solution that would fit a

tight planning schedule and whose scope would be just right for the team to work on.

Consequently, being able to identify all of the functionalities that the final outcome

should incorporate it is the instructor who ought to present a pre-prepared list of priori-

tized features that students will work on.

Figure 3. Industrial Scrum modifications that were made so that the method can be applied in the academic

setting

The course instructor’s role as a Product Owner is broader and comes with a bigger

amount of undertakings – for example as observed in [6], his help during a Sprint Plan-

ning Meeting is very beneficial to the development team that has no prior experience in

estimation of tasks nor the knowledge of the subject matter. Students are prone to en-

counter problems in differentiating between features from a Product Backlog and more

specific and detailed activities that are defined within a scope of a Sprint. Just as in the

case of industrial Scrum and professionals in the domain of IT, students tend to underes-

timate tasks, the workload and time needed to complete them and this is where the

course instructor should give a helpful hand and guidance. Figure 3 sums up the modifi-

cations made to the Scrum roles and activities that come along with them.

 Course Structure 3.3.

The day-to-day work varies significantly in the academic setting and commercial com-

panies, employees follow a different schedule than students normally do, projects last

much longer and involve more people than laboratory class undertakings. In the profes-

sional world, people can be completely committed to their work and it should takes

place according to a fixed schedule. Students, to the contrary are expected to work on

multiple projects in parallel, have different responsibilities, and the only thing they have

 Adapting Scrum Method to Academic Education ... 39

in common is the course they attend together. Hence, it is the course structure that influ-

ences the organization of a project and the way it will be managed.

The Lodz University of Technology will serve as the main example of the curricu-

lum projects carried out. In most cases, classes would take 15 weeks, with a workload

of 4 hours per week, divided into two hours of lectures and two hours of laborato-

ry/practical classes. While the proposed solution is expected to yield the best results for

such a configuration, classes that take more hours seem to be suitable to apply the modi-

fied version of Scrum as opposed to shorter courses. Additional effort that following a

structured methodology requires on top of the workload necessary to develop a project

would seem a burden and would not be profitable to the students.

Apart from the hours spent at the University, students are expected to spend ap-

proximately the same amount of time working on the subject after classes. Most of the

Scrum activities will take place in the class, thus shifting the bigger part of the devel-

opment process to after-school hours. While this might seem like extra effort and more

time spent by the students on one subject in question, it is expected to be advantageous,

as by good organization of work, clear and fair division of tasks – in the end students

will perform more efficiently and gain time in the global perspective of the development.

The industrial version of the method dictates the Sprint to take between 1 and 4

weeks, with a preference toward shorter intervals. Therefore, taking into consideration

that the course lasts for 15 weeks, a Sprint is scheduled to take from 2 to 4 weeks de-

pending on the type of course being conducted and planned workload. This was the

most common solution while applying Scrum in the academic setting [5,6,8] and proved

to be fruitful in the examined projects. In the case of a one week Sprint, there is not

enough time to conduct all of the necessary activities (planning, demonstration of the

product, retrospective) and work on the actual implementation at the same time. What’s

more, within the duration of a one-week Sprint students would be very unlikely to finish

a demonstrable version of the application as they take part in multiple courses as a part

of their curriculum and might experience scheduling and work organization problems.

The practices that are strictly connected with a Sprint – Sprint Planning Meeting,

Sprint Review and Sprint Retrospective, as usual take place before or straight after the

Sprint, so their frequency stays the same as in the typical Scrum applications.

To the contrary, a Daily Scrum evidently cannot still be carried out every day, as

classes take place once or twice a week, with the latter being a more common case.

Thereupon, organizing two ”daily Scrums” in a week is a goal set in the proposed solu-

tion, and should be put into action during the class time. In the case of once a week

courses, the professor should impose another Daily Scrum outside of the study room,

which might tend to be problematic so different approaches of organization should be

taken into consideration. The possible channels of communication of a distributed Daily

Scrum and their corresponding effectiveness are: e-mail, teleconferences, video confer-

ences, direct meetings.

As one knows from the daily practice, the e-mail or communication through docu-

mentation approach are the least favorable, as there is no real exchange and interaction

between the team members. Effectiveness of the meeting increases as the channel be-

comes more and more direct and resembles typical daily scrum.

As it is a short meeting, with duration of up to 10 minutes, students can organize

one in between classes on some other day of the week. A report should be required from

40 From Requirements to Software: Research and Practice

students after such a meeting in order to reinforce them to put the Scrum practices in

action and motivate them to regularly work on the assignment. A voice recording from

the daily Scrum would be a perfect solution, since it doesn’t require any extra effort in

the world of today’s modern technology where almost every student has a smartphone

and forces the meeting to take place at the same time involving all the team members.

Figure 4 sums up the differences and similarities concerning schedule, frequency of

activities and workload predicted between the industrial version of Scrum and his aca-

demic equivalent.

 Course Content and Schedule 3.4.

Composition of course content in order to maximize student’s profit, balance theoretical

knowledge and hands-on experience is always a big challenge for a professor conduct-

ing a class. Introducing a project management methodology on top of that conveys the

impression to make it even more ambitious and effortful, however importing Scrum into

the classroom is supposed to make life easier for the both parties.

Figure 4. Compares the organization of work in both industrial and academic versions of Scrum

 Adapting Scrum Method to Academic Education ... 41

3.4.1. Preparation of Project to be Developed and Forming Groups

The first obstacle that the course professor will face is adjusting the scope and subject of

the project that will be given to the course participants. It is advised to plan a project

that involves implementation of some information system, choice of subject being left

to the course monitor. It is highly important for the students to experience the essence of

Scrum which is used for the development of IT projects, therefore theoretical assign-

ments, similar to just planning and documenting a fictional project seem unsuitable in

the case of Software Engineering course, which by principle deals with knowledge

about software development. As stated by Hazzan [10] in the interest of teaching soft-

ware development approaches and methodologies, it is essential that the students’ un-

derstanding of them is ”based on one’s personal experience and reflection on one’s

creation process”. He also adds that ”in the context of SE (software engineering), the

better one understands the process of developing a software system, the better one may

understand the methodologies that guide this process”.

The professors from Rochester Institute of Technology, NY [11] whose course was

focused on Scrum process practices, came up with a challenging yet manageable project

idea. Teams used an open source; Java based development kit to create Android applica-

tions. This type of project in most of cases does not implicate prerequisites that under-

graduate students are not able to meet and what is more, proved to be a popular choice

among them. In the case of curriculum classes with focus on some Information Tech-

nology domain, the subject of the practical assignment stays the same as prior to intro-

duction of Scrum. However, some adjustments of scope and/or project milestones might

be necessary to fit the proposed schedule.

Figure 5. Division of Software Engineering course into sprints

For instance, at Lodz University of Technology multiple courses were organized in

a manner where there was a small project milestone outlined every three or four weeks.

Applying the ”academic” Scrum will require these small undertakings being translated

into set of requirements that can be developed within a Sprint and constituting one se-

mester long project. When it comes to groups formation, professors from both Universi-

ty of California [5] and University of Duisburg-Essen [6] have asked the participants to

write an application letter presenting their skills, relevant courses they participated in,

expectations towards the subject etc. in order to balance the teams. In the case of the

proposed solution, it is regarded as rather unnecessary, as the students have rather ho-

mogeneous background, thus teams can be formed quickly, still being relatively equally

skilled and efficient. An e-mail can be sent prior to the first classes, asking the students

to think over the team forming decisions.

42 From Requirements to Software: Research and Practice

3.4.2. Choosing Sprint’s Duration

Having 15 weeks of classes to exploit, usually the first one being an organizational

meeting, the following structure of Software Engineering course is proposed: 3 weeks

of both lectures and laboratory classes being devoted to theoretical knowledge about

software creation with special emphasis on Scrum, its rules, practices and activities

involved. Subsequently, four blocks of three weeks that make up Sprints, where Scrum

related activities are mainly carried out during laboratory classes and topics from the

discipline of Software engineering are presented in parallel during lecture time (Fig. 5).

Alternative division of the course time, with three Sprints lasting four weeks each,

was discarded. Primary reason for doing so is that the course should offer the students

as many opportunities to practice Scrum’s activities as possible and get a chance to face

problems that the Scrum teams usually do during development and where the Scrum’s

inspect and adapt approach comes in handy. Hence the sprints were prolonged to 4

weeks so that students work more intensively on the studied subject, have a chance to

deliver bigger parts of required functionality (aforementioned case of multiple small

projects within one course) and lastly, have evenly distributed workload all along the

course which would enable the students to avoid the crunch time just before the exami-

nation session.

A closing statement regarding Sprints is that the workload in the final Sprint should

be kept minimal in regard to students’ commitment to other courses and exam session

that occurs in the end of the semester. As focus of the course is put on learning Scrum,

the majority of development should take place in the middle of course’s duration and

the final weeks should be devoted to the evaluation of Scrum and carrying out Scrum-

related activities.

3.4.3. Scrum Related Activities Walk-through

The proposed outline of adapting Scrum involves abundance of its core’s formal meet-

ings, but presents numerous exercises and activities that are intended to facilitate the

learning process as well.

With regard to the last aspect, it is crucial to practice with students the Sprint Plan-

ning Meeting and activities that are correlated with it, hence there is a Sprint Backlog

exercises session foreseen in the prospect. While the course monitor, who plays the role

of the Product Owner, provides a full and detailed Product Backlog, it is the Develop-

ment Team that needs to convert that prioritized list of requirements into set of manage-

able tasks. This conversion process itself will certainly be problematic to the students;

the distinction between fine-grained activities that can be implemented within a Sprint

and high-level features from Product Backlog is not apparent to inexperienced Devel-

opment Team [6]. On that account, multiple general examples of how to write user

stories along with concrete example of the assigned project’s requirements being trans-

lated into user stories need to be given. To address these issues, a Planning Poker work-

shop is arranged in the laboratory schedule. Planning Poker is a widely acclaimed and

most commonly applied technique used to estimate effort – relative size of product

backlog items.

 Adapting Scrum Method to Academic Education ... 43

At the essence of Scrum lies the Daily Scrum – a mandatory communication meet-

ing of the entire Development Team which is carried out every day during a Sprint’s

duration. While apparently due to time and schedule constraints of the course partici-

pants it cannot take place on daily basis, form of the meeting being modified as well, the

goal of the gathering is preserved. One should remember that it does not serve to report

status of development to the project manager (instructor) but to exchange information

within the team, gain understanding of what work has been done, which tasks remain to

be implemented and which team member commits to take care of them. It usually takes

a couple of weeks for the team (depending on its knowledge and experience) to fully

grasp the idea of Daily Scrum.

Each Sprint is ensued by a Scrum Review, which is present in both types of courses

being conducted. It is a great moment for the professor to evaluate what students have

achieved in the last Sprint. Furthermore it is a perfect time to officially grade the

achievement of four weeks work – a demonstrable demo of the realized functionality.

Sprint Retrospective, for the most part scheduled right after Sprint Review, plays

utterly different role in the Scrum methodology. This meeting is a perfect time for the

team to reflect on the process they have been applying and ways of improving it. These

might include scheduling, communication channels, and division of tasks; in essence

any aspect that team finds questionable or burdensome. It is also suggested for the team

to use the feedback from burndown charts to tune the task identification and estimation

technique for future Sprints.

 Scrudemic Tool – Scrum Supporting Tool 3.5.

The project management tool was developed and used to support the academic version

of Scrum. Owing to the Scrudemic Tool, students can manage the project they develop

as a part of laboratory classes according to the ”academic” Scrum rules. The application

is intended to serve students in the management of the project throughout its entire

lifecycle – from the early phases of development (requirements gathering in the Back-

log), actual development (Task Board with assignments that are currently in progress)

and evaluation of results (Burndown charts that show the overall performance over an

interval of time). The functional requirements for the Scrum supporting tool are:

 user can register an account,

 user can be identified and matched with his account,

 user should see activity of his own team,

 user can manage tasks and log his progress,

 user can manage Sprints within his project,

 user can maintain a Backlog for the project,

 user can track progress of work using Burndown charts.

44 From Requirements to Software: Research and Practice

Figure 6. Dashboard – main window of Scrudemic application

Once the user successfully logged in, a Dashboard/Overview interface is rendered.

The window consists of the menu bar on the left, which allows the user to browse

through 5 principle views, namely: Overview, Backlog, Task board, Sprints, Burndown

as well as access the settings of the application (left) and log out button (right) (Fig. 6).

4. Conclusions

This paper presented the outline of Scrum project management and its practices, rules

and artifacts enabled to see how Scrum works in commercial project development and

what benefits it brings. It proposed a course design that would allow importing Scrum

into the classroom and developing a student’s project in accordance with its practices.

Introduction of a project management framework in academia classes gives both chal-

lenges and opportunities, yet the potential benefits surpass the downsides. From the

course professor perspective it is primarily an improvement in the class organization

dimension. Introducing Scrum yields simple yet powerful means to get insight into

students’ work, track it effectively and evaluate it on regular basis.

As from the student’s angle it is a great opportunity to engage in Agile practices

within the framework of Scrum that supports the fundamental software engineering

skills every IT specialist needs to have. Integrating a project management methodology

into daily work of students puts in perspective how effectively crucial aspects of devel-

opment can be carried out. Requirements management, project planning, tracking and

testing become structured tools that students can use to fight time constraints and deliv-

 Adapting Scrum Method to Academic Education ... 45

er high quality project on time. Finally owing to Scrum practices students benefit from

effective team collaboration and can develop their communication skills.

The presented approach is realized each year at the authors’ institution, involving

the group of 30-50 students, performing different projects, both for desktop and mobile

platforms, creating Internet applications, computer games and management information

systems.

5. References

[1] R. C. Martin, Agile Software Development - Principles, Patterns, and Practices, Prentice Hall, 2002
[2] P. Abrahamsson and O. Salo, Agile software development methods - review and analysis, VTT

Publications, 2002

[3] K. Schwaber and M. Beedle, Agile Software Development with Scrum, Wiley, 2001

[4] R. Ramsin, Software Development Methodologies, http://sharif.edu/

[5] L. Werner and D. Arcamone and B. Ross, Using Scrum in quarter-length undergraduate software

engineering course, University of California, 2012
[6] J. Schild and R.Walter, ABC-Sprints: Adapting Scrum to Academic Game Development Courses,

University of Duisburg-Essen, 2010

[7] M. Hicks and J. S. Foster, Adapting Scrum to Managing a Research Group, University of Maryland,
2010

[8] L. Pinto and R. Rosa, On the Use of Scrum for the Management of Practical Projects in Graduate

Courses, Frontiers in Education conference, 2010
[9] Using Scrum for Software Engineering Class Projects Ramrao Wagh, 2012

[10] O. Hazzan, The reflective practitioner perspective in software engineering education, Journal of

Systems and Software, Vol. 63, Issue 3, pp. 161–171, 2002
[11] T. Reichlmayr,Working Towards the Student Scrum - Developing Agile Android Application, Rochester

Institute of Technology, 2011
[12] Agile and Extreme Programming for Product Development and Consulting,

http://www.goodworklabs.com/process/

[13] J. Sutherland, Scrum: The Art of Doing Twice the Work in Half the Time, Crown Business, 2014

Chapter 3

Agile Management of Research Projects in

the Contract Context

1. Introduction

This study is based on the 30+-year experience gained while managing innovative

process control and business management projects [1][2][3][4][5]. For these and similar

projects, their scope definition and budget estimation in advance was always the most

challenging task. Typically, if the estimated budget of any project is higher than the

other ones, the solution provider is recognized as inefficient in one way or another. But

there might be another reason if innovative projects are concerned, i.e. the provider's

know-how and extraordinary experience make a better assessment possible. Better

assessment always means higher budget in this context and, in a typical bid where

budget is the most important factor, it puts the solution provider in an underprivileged

position and leads to the “more stupid the better” syndrome.

For an innovative project, the main reason why its critical parameters are hardly

predictable is its innovative nature. From the definition, an innovation as a translation of

an idea or invention into a product or service that creates value is an exploration into

unexplored areas. The leader of the team must, therefore, face a high level of

uncertainty.

The main aim of any invention application outcome is to further satisfy the needs

and improve selected processes. But in all cases it is a business process involving at

least two organizations: a customer and a solution provider that must cooperate under

a contractual relationship, i.e. a voluntary, deliberate and legally binding agreement

between them. The contractual relationship is evidenced by an offer, an acceptance

thereof, and a valid (legal and valuable) consideration.

To make the procurement process transparent, fixed-price and fixed-term offers are

usually expected to simplify the comparison and selection of a bid for contract award.

As a consequence, the quantitative nature of the comparison relaxes the responsibility of

the target company (customer) management involved in the selection process, which

makes the selection process offer-centric and neglects the uncertainty of the proposed

terms. In some circumstances it may cause an assessment of just a “wish list”, but not

a realistic proposal and lead to circular impossibilities:

1. It is impossible for the customer to prepare the specification because the

customer is unaware of the necessity of exploration.

48 From Requirements to Software: Research and Practice

2. It is impossible for the solution provider to prepare the offer as the

specification is inadequate and the unanswered questions can be addressed and

worked out as project goals only.

The procurement issues described above could be partially solved using direct

negotiations or the single-source acquisition method. Unfortunately, both suffer from

the non-quantitative nature of the selection process and usually are an exception to the

typical procedure. Nevertheless, as the quantitative assessment is difficult or even

impossible, they might be a better choice.

The discussion about the procurement process is out of this paper scope. However,

in spite of the selected procurement method, the question how to limit the budget,

determine the time frame and define the expected scope and quality in the contract is

still open.

There are a variety of methods supporting budget assessment, but it is always only

assessment as a result of the fact that the project scope is unpredictable. In most cases

unpredictability means that some aspects of the research and development work are not

calculated (are omitted) in the cost estimation, which usually leads to budged

underestimation. Appling an arrangement under which a solution provider (contractor)

is paid on the basis of actual cost (time and material contracts) alone puts the customer

into an unprivileged position because there are no measures that can be used to asses if

the paid workload is really required, i.e. it is relevant and within the scope of the project.

It could easily lead to endless projects, as there is always something to discover as a part

of the research and development activity. Especially in case of direct negotiations or

single-source acquisition method for fixed-price contracts the budget overestimation

could be enforced as a method to address the inevitable project unpredictability. For the

customer, both situations are usually inacceptable and a compromise must be worked

out.

Detailed definition of the contract rules is far beyond of this paper scope, but it is

only proposed to assume that the contract imposes a budget limit and is paid on the

basis of actual cost. Additionally the solution provider is tasked with making the final

cost estimation on continuous basis to recognize the situation when the project budget is

put in danger. In this case the following options could be applied:

 the budget is renegotiated;

 the scope of the work is limited;

 the project is canceled.

For the problem described above, the article proposes a methodology framework

that tightly couples:

 Agile approach to dynamically control the work scope and time framework

 Workload tracking to precisely control the value for money

Agile management is recognized as a methodology that helps us to guide software

development projects towards the most valuable outcome possible [6] [7]. To address

this question the existing agile approach (sometimes called philosophy [6]) must be

implemented in the context of contract rules (section 2). It should be non-invasive and

effortless, but implemented as strictly observed rules described in a formal way by the

contract to control the development process with the goal to assure customer satisfaction

under the contract limitations. It is proposed to deploy it as a consistent solution (section

4) using supporting tools developed on the business process modeling basis (section 3).

 Agile Management of Research Projects in the Contract Context 49

2. Agile Based Contract Rules

 Objectives 2.1.

Generally, the innovative projects are aimed at improving the selected key performance

indicators (KPI) as a result of process control or business automation using novel

architecture, algorithms, business process patterns, software, hardware, etc. It requires

providing a variety of:

 out of the box products,

 custom services including designing specifications, developing, integrating,

testing, training, commissioning and supporting.

Usually the appropriate selection of products is an outcome of services and depends

on their quality and performance (the purchase procedure is beyond the scope of this

paper).

One of prerequisites for the achievement of the goal, i.e. real improvement in the

selected KPI, is the use of such solutions and implementation of such target solution

functionalities that the expectations of the parties concerned are met to the greatest

possible extent within the agreed time frame and cost limits.

Here the optimization of:

 the scope of work that will enable the customer to achieve the business goal,

and

 the implementation team's efforts to maintain maximum work efficiency and

quality of the provided deliverables, which, consequently, significantly reduces

costs

is of crucial importance.

It is, therefore, proposed that well-proven practices derived from Scrum [6] [7] [8]

[9] [10] methodology related to management of development and implementation work

within the project should be used. Scrum is proposed because it concentrates on the

management aspects, which makes the adoption process straightforward. The Product

Owner role defined by the Scrum methodology is also the best candidate to be tasked

with representation of the business objectives on the continuous basis during the whole

project lifecycle. A well-defined roles set proposed by Scrum could be also expanded

non-invasively by adding roles in charge of taking care about the formal and legal

course of the agreement and controlling of the work environment.

On the basis of agile philosophy it is assumed that optimization can be achieved if

cooperation is based on the following assumptions:

 Cyclical nature - work is carried out in pre-scheduled time cycles (milestones),

which allows the customer to control the scope and progress of work and value

for money.

 Mutual trust – the application of methods and tools to ensure great

transparency in the process of developing and implementing new findings and

deliverables, which allows the customer to fully monitor work.

50 From Requirements to Software: Research and Practice

 Methodology Rules 2.2.

It is proposed that the following business model should be used to carry out tasks in the

area of cooperation:

 Under an agreement of business cooperation (framework contract) concluded

for an indefinite or long period of time, the solution provider will implement

and maintain solutions in the area of collaboration stipulated in the agreement.

 Further development of the implemented solutions will be effected as an

extension to the basic scope of the agreement.

 To ensure appropriate competitiveness conditions, the rules of Scrum project

management will be implemented.

The contract as a formal set of statements provides business environment for any

activities related to the development and deployment of project deliverables. The

cooperation agreement will define the organizational framework and basic accounting

principles of the further work.

In all projects referenced in Section 1 as the experience source the target was

reached as a series of contracts. For the innovative research projects it is a typical

behavioral pattern as exploration into not well-known areas usually yields discovery of

new ones also worth exploring next time. To limit this naturally infinite process there

must be defined performance key indicators to assess quantitative and qualitative

objectives before making decision in this respect.

It is, therefore, proposed to define the contract as a foundation for carrying out a

series of loosely coupled projects, instead of a series of contracts. The main aim of the

contract is to define basic rules related to new project scoping, budgeting, scheduling

and progress controlling.

The proposed approach is mutually beneficial. One of the benefits for the customer

is an obligation of the supplier to provide appropriate resources to address any problems

in the area of cooperation. This model is also beneficial for the supplier because it offers

prospects for a continuous fixed-term solution delivery process.

It is proposed that the contract has to define procedures compatible with Scrum

project management and consequently the following roles are featured as a part of

collaboration:

 Managers (one for each party) - are responsible for the formal and legal course

of the agreement and controlling of the work environment.

 Business Owner (customer's employee: like Product Owner in Scrum

methodology) - is responsible for defining and prioritizing requirements in the

initial phase of each milestone (iteration in Scrum methodology) to ensure

maximum improvement in the efficiency of business processes.

 Team Leader (provider's employee: like Scrum Master in Scrum methodology)

- is responsible for cooperation between the Development Team and the

Business Owner and for compliance with the contract rules governing

management of the project.

 Development Team (provider's employees) - is responsible for selecting

requirements (scope of work) to be fulfilled within a milestone from the Basic

Product Backlog (equivalent to Product Backlog in Scrum methodology) and

 Agile Management of Research Projects in the Contract Context 51

the milestone length at the beginning of each milestone and for the transfer of

the developed deliverables to the Business Owner before the milestone end.

The names defined by Scrum are changed to emphasize the responsibility

modification. For example the Team Leader must not only follow the Scrum rules but

also take care about contract limitations and obligations. It requires some familiarity

with the local legal system. The Business Owner is additionally responsible for

validating of the workload settlement in the context of the selected milestone scope.

Work scope selection, designing, preparation of deliverables (software,

documentation, graphics etc.) and deployment (installation, configuration, testing, and

documentation) will be effected in specific time cycles called milestones. The milestone

length should be fixed each time and should not exceed 2 months. It is the upper limit

that should be a compromise between the development needs and business bureaucracy

inertia.

Each project begins with defining the direct target, initial functional requirements

(a set of required functions) and non-functional requirements (a set of required solution

features) that make the Basic Product Backlog; that backlog gives grounds for selection

to determine the scope of further work in the next milestone.

The Development Team selects requirements at the beginning of each milestone, on

the grounds of their priorities agreed with the Business Owner and the scope of work

selected to be carried out in that milestone, which (according to the Scrum rules)

remains unchanged for that milestone. The milestone scope selection is a negotiation

process based on the business objectives represented as requirements priorities and

technical limitation analysis. Unfortunately, it usually causes a longer iteration cycle

because it is not enough to provide something that works, as it has to work also for

business. Good examples are code refactoring in software development or design

documentation preparation. For business, this work provides no value at all so if

required it must be included as negligible part of the whole milestone scope of the work.

The Development Team hands the products of the completed milestone (including

deliverables such as software code, documentation etc.) over to the Business Owner at

the milestone end.

Any work that has not been completed during the milestone for any reason returns

to the Basic Product Backlog and is subject to priority analysis and technical

dependencies for the next milestone. All new requirements defined in course of work

are entered into the Basic Product Backlog as well.

The reported team workload and the value of granted licenses and copyright form

the basis for settlement. The workload is settled on the grounds of monthly reports

submitted to the Business Owner and the Managers. It is calculated at the common

basic rate per man-hour. It is important to apply the common basic rate with the goal of

mitigating customer's influence on association of the team members and tasks.

On completion of the project, the customer gets a license granting him a right to use

software and supplied deliverables.

In order to minimize the risk of underestimation or overestimation of the project

budget in case there is a great deal of uncertainty about the research field, a feasibility

study, design work or a pilot application may be executed in order to determine:

 qualitative (direct and indirect) business goals,

 technical solutions optimal against selected KPI,

52 From Requirements to Software: Research and Practice

 necessary investment outlay on the purchase of third party products,

 own and third party workload,

 maintenance costs of the proposed solution,

 selected economic efficiency indicators,

 risk analysis as a component of risk management; it consists of identification

of possible negative external and internal conditions, events or situations.

Additionally, the risk of budget estimate incorrectness can be minimized thanks to:

 the work cyclical nature, i.e. the possibility of finding an error at an early stage

of project execution,

 billing work intensity, which balances risks of both the partners and makes

overpayment in case of overestimate impossible,

 maintenance work that ensures the continuity of system operation through the

quality of the rendered services instead of a guarantee; it does not exclude

guarantee commitments for certain products.

3. Implementation

 Prerequisites 3.1.

Successful implementation of the proposed methodology requires appropriate measures

to:

 Implement billing principles.

 Support defined roles and management rules in a consistent way.

 Promote mutual trust.

All are closely related to rules that must be concluded by the contract. There is no

doubt that it requires appropriate tool selection generating reports formally acceptable

to the customer Account Department to effect the settlement and effectively support

management rules at the same time. The main purpose of this section is the definition of

requirements that have to be met by the tool.

A variety of out of the box products supporting implementation of the Scrum

management rules are available on the market. A set of primary prerequisites for the

proposed approach must be defined to select one of them or decide to develop a new

one. All of them can be grouped into the following categories:

 Business processes: to organize the work.

 Data model: to represent vital information.

 Functionality: to process the data according to the business process rules.

Even though the detailed description of all the prerequisites is beyond this paper

scope, the topics most important to the proposed methodology implementation will be

discussed in the following subsections in hopes of making the decision process easier.

The discussion could also be used as a starting point to expand the existing products by

the end user or vendor with the aim of implementing the contract rules proposed in

Section 2. The requirements defined in this section are vital for the decision as to how

the presented methodology should be deployed in the case study presented in Section 4.

 Agile Management of Research Projects in the Contract Context 53

 Business Processes 3.2.

Any business process is a series of logically related activities or tasks (such as planning,

research, development, design, testing, documentation, etc.) performed together to

produce a defined set of results. According to the Business Process Model and Notation

specification [11] a business process can be formally modeled as:

 Roles: a set of actors engaged in activities

 Activities: a set of actions and events

 Relationships: a set of workflows and roles communications

 Artefacts: a set of data objects, groups and annotations

For the methodology proposed in this paper, the roles together with their

responsibilities and expected behavior as defined in Section 2.2 must be transformed to

actions and workflows.

Communication of roles is crucial to the performance of actions and final results

quality for the kind of business processes discussed in this paper. The main feature of

this communication is unpredictability of forms and formats selected for this purpose by

the Development Team. For example, brainstorm results may be documented as a thread

on a discussion board, picture of notes/diagrams on a white-board or meeting minutes.

Unfortunately, the results remain often undocumented at all and the supporting tools

must, therefore, engage the Development Team to select one and provide documentation

for the most important collective actions.

On the other hand, the selection of forms and the necessity of preparing

documentation must follow the general agile management principles, for example

documentation of a Development Team daily meeting can be recognized as time wasting.

Business processes aimed at accomplishing an innovative project may produce

a variety of results but intellectual properties are usually the most important ones, i.e.

discoveries, formulas, inventions, knowledge, registered designs, software, know how,

etc. In spite of their intangible nature they must be documented to be useful as an

outcome of the project governed by contract rules. In this case documentation is a

representation of something that has no physical existence otherwise. Documentation or

other forms of intellectual property representation are of special importance as the

contract must not be used to describe any form of abstraction.

Business processes are usually expected to produce results of the highest possible

quality level. Because the Development Team’s outcome is intellectual property (some

kind of abstraction) the question how to improve the quality arises. To address this

necessity it is proposed to combine the following tracking functionalities into one

consistent mechanism:

 Deliverables including code

 Tasks and issues

 Workload

 Entities representing the process state

Deliverables tracking is used to maintain current and historical versions of files

such as the source code, web pages and documentation. The tasks and issues tracking

mechanism allows the team members to follow the sequence of actions undertaken to

fix the problem or obtain the requested result. An association of each reported workload

with a task and team member should be a good motivation to improve individual

54 From Requirements to Software: Research and Practice

performance and engagement [13] [14]. It is worth noting that during the task lifecycle

it typically changes the current owner many times. Any record describing a workload

must, therefore, preserve information about the associated team member's activity. The

tracking mechanism should also facilitate diagnostics and finding workaround solutions.

An entity is a collection of properties representing selected data – a class - of the current

process state.

 Data Model 3.3.

Contract settlement and, finally, billing requires accuracy. To put trust on the accuracy,

the settlement mechanism must be easily verifiable on a continuous basis, and

unambiguously associated with the related workload.

In spite of the management rules governing the project, the team work is organized

on the task basis. Tasks are defined to describe work needed to fulfill requirements

planned for the selected milestone. This relationship between Task and Resources is

dynamic and can be changed several times during the task lifecycle. Each reported

workload must be associated with a relevant task. To promote auditability and team

members engagement, the reported workload must be also accumulated for each

member individually and associated with the task. Both associations are permanent for

the whole task lifecycle. A follow-up class diagram is shown in Figure 1.

Figure 1 Task relationship diagram.

To successfully finish any milestone, all associated requirements must be

accomplished. Before being selected for a milestone all requirements make up the Basic

Product Backlog. The Business Owner should be able to add, update, prioritize, split,

merge and categorize them.

The contract billing rules use Project class entities to represent:

 Budget limit

 Scope

 Timeframe

 Quality

The Project is, therefore, a collection of Milestones (Figure 2). This way

functionality counting the reported workload for the project can be easily implemented.

 Agile Management of Research Projects in the Contract Context 55

The requirements planned for any milestone and related tasks can be used to manage

and monitor the project scope. To facilitate this process and allow all participants to

monitor the work progress, the entity of the Task class has to expose status information.

Each task is a collection of actions reported as workload items and should be defined in

terms of the baseline start and end times planned to realize it and actual timing

information collected from the underlying Workload records.

Figure 2 Project relationship diagram

To support diagnostics and maintain quality, the model shown in Figure 2 has an

additional relationship between the Task and Milestone classes to provide

supplementary tracking information that allows the current owner to recollect situation

at the point in time it was created. Registering all modifications of entities shown in

Figure 1 and Figure 2 should be required for the same purpose.

According to Section 2.2 the Contract class is a collection of Projects (Figure 3).

Its role is to provide a set of rules governing the engaged parties cooperation. Therefore,

together with the surrounding entities, it should provide information allowing mangers

to:

 Synchronize and schedule work realized as separate projects

 Optimally use resources

Sometimes splitting even closely related work is necessary in case a different

Business Owner must be assigned. Engaging the same team into many projects must be

limited by the working hours – team capacity. Theoretically the optimal load of the

team as a whole is near 100% potential capacity limited by the working hours. To fulfill

this requirement the Estimation class is added to the model (Figure 3). At the planning

stage its role is to establish the Development Team of a project and assign estimated

workload to the team members. It is worth noting that resources usage must be

monitored for each individual separately irrespective of its teams association.

56 From Requirements to Software: Research and Practice

 Functionality 3.4.

Generally speaking, implementation of the methodology proposed in this paper requires

functionalities that may be grouped as follows:

 Contract management centric

 Project management centric

 Product management centric

People hate to track time, but it has to be done to provide the project settlement

mechanism. Time tracking should be fast and easy, however, since progress reports and

contract billing are based on accurate time records, it must prevent team members from

reporting workload overlapping in time and associated to more than one task. To

facilitate workload reporting, the user interface may offer functions like stop-watch,

workload entities snapping, common activity reporting, etc.

The workload tracking result may also provide a very good feedback that can be

used for further improvements of the project scope planning, budgeting and personal

improvements. A good source of feedback making a common experience foundation for

planning is a well-suited periodical report generation mechanism. A different solution is

required for the analysis of the individual engagement. It could be obtained by using a

personalized dashboard that integrates workload reporting and monitoring of reported

workload.

Figure 3 Contract relationships diagram

The project management has to be supported at least by:

 Requirements/tasks management

 Work organization and planning

 Team member communication and documentation

 Deliverables management

 Agile Management of Research Projects in the Contract Context 57

The main challenge faced up by innovation deployment projects is

commercialization of the results. Even if a result is launched as a prototype, a release

procedure and lifecycle management support must be considered. It requires documents

versioning, i.e. assigning either unique version names or unique version numbers to

unique states of document sets (e.g. computer software).

4. Case Study

 Deployment 4.1.

For a successful deployment of the contract aware project management methodology

presented in this paper, the following nonfunctional requirements are of great

importance:

 Remote access to the main functions for all parties.

 Possibility of offering the application as a service (cloud computing).

Typically, parties to a contract are not sited nearby and, hence, are not able to use

common IT infrastructure. They have to use remote access to common resources instead.

Moreover, it must be assumed that contract parties are independent organizations and,

therefore, the application used to support management must be offered as a service to at

least one of them. Consequently, the contract rules must also cover a Service Level

Agreement and infrastructure must meet the cloud computing requirements.

Agile Workload Tracker [15] software package is a solution meeting the

requirements presented in this paper. It was designed as a customization and extension

of SharePoint 2010 (Microsoft's widely used collaboration software) instead of

developing the application from scratch. It is an Internet-based and cloud computing

ready platform providing a variety of out of the box functions dedicated to support team

work, including documents management and workflows.

Additional functionality dedicated to supporting the proposed methodology has

been implemented using a SharePoint server and client site application program

interface (API). Both are very powerful foundations for the deployment of custom

functionality. Using reusable software mitigates development costs and locating the

functionality in a cloud mitigates deployment and maintenance costs.

Using SharePoint only the software code versioning and modification tracking are

not satisfactorily supported. Fortunately, API and email processing service offered by

SharePoint make the integration with existing versioning software straightforward.

 Usage 4.2.

Since 2006 an independent workload tracker tool has been developed and successfully

used to improve research team performance in a number of projects, e.g. [3] [4] [5] as

the result of:

 Controlling the engagement of team members in particular contracts.

 Measuring member's effort related directly to contracts in comparison with

time spent on general operational activities.

The idea was to create and apply a team motivation mechanism.

58 From Requirements to Software: Research and Practice

Since 2011 a limited version of:

 Agile project management rules based on the Scrum principles described in

Section 2;

 Tools supporting project management and workload reporting described in

Section 3;

has been used internally as a basic management methodology in a projects aimed at

deploying a family of solutions [5] [16] (contracted by a company from the fast moving

customer goods industry) with the main goal of limiting the scope of the research and

development and gaining the prospective customer. Because the solution was limited to

internal use only, to mitigate the project uncertainty the first stage was dedicated to

prepare design documentation to precisely define the project scope and deployment

environment. Starting form a few pages of initial specification provided by the customer

to process the procurement procedure the 600 pages professional design documentation

was prepared providing:

 Target domain-centric business process model to define roles, activities and

main objectives of the proposed solution.

 Functional and non-functional requirements to define the scope of the project.

 Use cases models to figure out how the requirements are to be fulfilled.

 Coverage matrix to make sure that all requirements are addressed by at least

one use case.

 Implementation and deployment models to make sure that the final solution is

applicable in an existing environment.

Unfortunately up to now no one have read the documentation in details. The

specification was almost neglected and recognized as prepared by the developers for

developers only. Fortunately the documentation was used partially by the team as a road

map helping to avoid decisions leading to blind ends. Finally, the documentation

usefulness and its positive impact on the project performance are hard to be proved but

there are no doubts that this approach was unpractical for this project at all.

Table 1 Team projects comparison.

Project Year Workload (a) Budget (b) Overdue (a/b)

Project 1 2011 1973,25 500,00 294,65%

Project 2 2012 2481,04 1000,00 248,10%

Project 3 2013 636,50 624,00 102,00%

Project 4 2013 967,52 850,00 113,83%

Project 5 2013 509,96 500,00 101,99%

Project 6 2013 525,33 450,00 116,74%

Project 7 2014 2061,62 2212,50 93,18%

The key performance indicators for the team involved and its projects aiming at

deploying the mentioned above products family are presented in Table 1. In the table

the budget limit and reported workload are expressed by normalized values to minimize

the influence of condition fluctuation over years and does neither represent directly real

budget nor workload (non-disclosure limitations). All projects are contracted and

realized on a fixed-price basis in spite of the fact that the contract allowed adaptation of

 Agile Management of Research Projects in the Contract Context 59

the budget in case of any need to change requirements significantly. The team members

are involved in other activities at the same time. To make auditing possible, i.e.

reporting daily workload of individual members, all working hours are reported and

allocated to separate projects.

From this table we can learn that the financial performance for Project 1 and

Project 2 was not satisfactory. At the same time the customer satisfaction was also far

from expectations in spite of efforts spent to obtain a better result. Because the overall

conclusion of the survey was: “Some improvements have to take place to continue

cooperation” at the end of 2012 a new agreement was made under the assumption that

new projects should be contracted applying the rules described in this article, i.e. agile

management embedded in the contract rules.

After applying new contract rules in the early 2013 an extraordinary improvement

of the projects key performance indicators proves that using the agile approach alone for

fixed-price contracts does not guarantee a satisfactory solution. It must be also noted

that the customer satisfaction rated as an index 0-100 reached the max value 100, i.e.

overall conclusion of the survey was “cannot be better”.

5. Conclusion

The innovative process control and business management research projects aimed at

providing solutions that cannot be just a copy of a well-known „technical pattern” suffer

from uncertainty and are recognized as a high risky business activity. It is caused by the

work scope that is hard to be predicted and described as it must embrace exploration of

critical areas not jet discovered.

The paper presents the methodology and tools that can be used for calming down as

a result of a tight coupling of:

 The Scrum project management methodology.

 Workload, tasks, and source code tracking.

 Appropriate legal instrumentation.

 A set of software tools and dedicated workspace to improve trust and support

seamless control of defined principles, operational coordination, and make the

cooperation transparent for all parties.

The selected practical results are also presented as a use case analysis. The case

study shows that using the agile approach alone does not improve the business

efficiency and customer satisfaction. It can be seen that the real improvement is

achieved after converging selected agile management and contract legal rules including

but not limited to the workload settlement.

The presented result leads to a very interesting question of what is the cause that

has a major impact on the business performance and customer satisfaction improvement.

To answer this question independent research must be undertaken, but it is worth noting

that applying the new approach changed the role of customer representatives

significantly.

Before applying the proposed methodology they are responsible for auditing of the

final output for conformance to technical, reliability, maintainability, and performance

requirements. It leads to arguing and arguing the question “why a …..

60 From Requirements to Software: Research and Practice

functionality/feature is not supported” with the Team Leader gives always the same

answer “because it is not included in the specification, which has been already approved

by the contract parties”. From the discussion in Section 1 and 4.2 we know that

authoring the specification and making it comprehensive both for the end user and

development team is an unrealistic goal and unpractical approach for many reasons.

This limitation is usually taken as an opportunity to assume that there are “obvious”

requirements that must be fulfilled by any professional team regardless of whether they

are in the specification or not. Main concern is that we have not adequate measures to

distinguish obvious and not obvious requirements at the commissioning stage of any

project. Any discussion with the customer then becomes slightly difficult.

After applying the methodology proposed in this article the contract representatives

become active members of the development team contributing to the selection of the

research directions and scope of the work. At the same time they must share

responsibility for an overall project success. It changes seamlessly the project into an

adaptive process relaying on the customer involvement on the continuous basis. If that

is the case new requirements are also formulated by the development team. The team’s

proposals like “maybe this … functionality/feature will be useful” are replayed by “yes,

provided we have budged and time to accomplish it”.

Finally the above discussion can be concluded that the methodology presented in

this article is a proposal of a practical implementation of adaptive processes [6] in the

context of real contract limitations like a fixed price.

References

[1] CAS. Cfis-1 -flight inspection system of the radio navigation aids.

http://www.cas.eu/Projects/FlightInspectionSystemoftheradionavigation.aspx, 2015.

[2] D. Arendt and M. Postol. Real-time multiprogramming system for mine control centre.

Microprocessors and Microsystems, 14(1):39–46, 1990.

[3] M. Postol. Large scale distributed process and business management integration. In 14th International
Congress of Cybernetics and Systems of World Organisation of Systems and Cybernetics, Wroclaw,

2008. Politechnika Wrocawska.

[4] M. Postol. Real-time communication for large scale distributed control systems. In International
Multiconference on Computer Science and Information Technology, 2007.

[5] CAS. Shepherd application; optimal management of inbound and outbound deliveries.

http://www.cas.eu/Products/YARD/Shepherd.aspx, 2015.
[6] M. Fowler. The New Methodology. http://martinfowler.com/articles/newMethodology.html, 2013

[7] M. Rizwan J. Qureshi. Agile software development methodology for medium and large projects.

Software, IET, 6(4):358–363, 2012.
[8] K. Beck. The agile manifesto. www.agilemanifesto.org/principles.html, 2001.

[9] D. Jamieson, K. Vinsen, and G. Callender. Agile procurement and dynamic value for money to

facilitate agile software projects. In 32nd Euromicro Conference on Software Engineering and
Advanced Applications, SEAA, pages 248–255, 29 August 2006 through 1 September 2006.

[10] J. Shore and S.Warden. The Art of Agile Development. O’Reilly Media, Inc.,, Sebastopol, 2007.

[11] Object Management Group. Business process model and notation. http://www.bpmn.org/, 2013.
[12] K. Schwaber. Agile project management with Scrum. Microsoft Press, Redmond, Wash., 2004.

[13] A. Cockburn and J. Highsmith. Agile software development, the people factor. Computer, 34(11):131–

133, 2001.
[14] C. De O. Melo, C. Santana, and F. Kon. Developers motivation in agile teams. In 38th EUROMICRO

Conference on Software Engineering and Advanced Applications, SEAA 2012, pages 376–383, 2012.
[15] CAS. Agile workload tracker software. http://www.cas.eu/Products/AWT.aspx, 2015.

[16] CAS. IPR application; electronic inward processing relief. http://www.cas.eu/Products/IPR.aspx, 2015.

Chapter 4

The Project Management Perspective on

Software Value: a Literature Review

1. Introduction

In today’s cutthroat product and services industries, software has become the main driv-

er for competitive advantage, enabling faster and cheaper innovation and product differ-

entiation. As the size and complexity of software-intensive solutions increase, so does

the impact of software development decisions on the overall product offering. That is,

any decision taken regarding software product/project management and development

(e.g. what features to design, what quality to offer, or what technology to choose) could

impact the entire product’s/project’s life cycle and value, not to mention that it could

limit future possibilities and direction of both the software and business 7[2][3]. To

remain competitive, innovative and to grow, companies must change from cost-based

decision-making to value-based decision-making where the decisions taken are optimal

for that company’s overall value creation [4][5].

 Previous studies have proposed value considerations and corresponding measure-

ment solutions needed for making decisions about software product management and

development [6][7][5][8][9]. Moreover the two recent literature reviews in the subject

leave the software project aspect unaddressed [4][5]. However, these contributions

were often isolated and with a limited perspective; for example, focusing only on cost,

or on product characteristics such as usability. Consequently, a complete picture of

value considerations relevant from different perspectives, and required for taking soft-

ware product management and development decisions, was missing.

 Khurum et al. [4] proposed a consolidated view of value – the Software Value Map

(SVM). SVM characterizes software value according to the four major value perspec-

tives - customer, internal business, financial and innovation & learning. Each value

perspective is detailed further using a nested structure in which a perspective is a root

node, and split into Value Aspects (VAs); these in turn can be split further into Sub-

Value Aspects (SVAs) and Value Components (VCs), which are the leaf nodes.

 The VCs are used by decision makers as decision support when identifying and dis-

cussing important value components. VCs can be measured on a five-point ordinal scale

(very negative impact, negative impact, neutral, high impact, very high impact) repre-

senting the impact that the implementation of a given decision scenario may have on a

VC. The SVM currently has 32 different VCs; however in practice professionals only

use a subset of these within the context of a decision scenario being discussed - the most

important VCs. Such subsets are called Impact Evaluation Patterns [10].

62 From Requirements to Software: Research and Practice

 The SVM contains several value aspects that are related to software quality aspects

outlined in e.g. ISO/IEC 25000. SVM was developed and validated in collaboration

with Ericsson, and presented promising results; however, it still needed to be evaluated

in software project intensive contexts that represent a view of value within the scope of

project management and development. The current focus of SVM is on product man-

agement and its inherited characteristics, leaving the project managers without quality

support for identifying and managing value on the project level.

 The goal of this paper is therefore to identify additional value components from the

project management perspective in order to expand the current body of knowledge re-

garding value considerations within the context of both product and project manage-

ment and development. In order to accomplish our goal we carried out a snowball litera-

ture review.

 Recent master thesis effort [5] carried out a systematic mapping study on value-

based software engineering relating to product and project management; this study is

grey literature and did not provide the level of detail we are focusing upon herein. The

work of Khurum et al. [4] focuses on product management view on software value and

therefore provides limited usefulness for this work.

This work provides a comprehensive view on software value in software project

management coming from a snowballing literature review that was grounded in previ-

ous work. We identified nine papers that focus on project management perspective on

software value, grouped into three themes: financial analysis of a project, risk analysis

within a project and process improvement based on project assessment. From these

studies, we suggest seven extensions to the current Software Value Map.

The remaining of this paper is organised as follows: Section 2 provides related

work, followed by a description of the research methodology in Section 3. Results are

presented and discussed in Section 4, followed by suggested extensions to the SVM in

Section 5. Finally, a discussion on our experiences carrying out a snowballing literature

review and conclusions are given in Sections 6 and 7, respectively.

2. Related Work

Two literature reviews are relevant for this study. In the first study, Khurum et al. [4]

survey related literature using a systematic mapping methodology, followed by snow-

balling. The authors identified 30 value aspects classified into the customer, financial,

innovation and learning and internal business perspectives. The work focuses on prod-

uct management perspective and thus does not cover project management perspective

on software value.

 The second secondary study we are aware of related to the topic of our snowballing

literature review is the master thesis work by Nasser and Ibrar [5], where they have

conducted a mapping study of value-based software engineering in order to identify

what sub-areas of software engineering were represented by the primary studies that

were identified. They also identified the types of empirical studies associated with each

sub-area. The sub-areas covered requirements engineering, architecture, design, devel-

opment, verification and validation, quality management, project management, risk

management and people management.

 The Project Management Perspective on Software Value: a Literature Review 63

 27 studies were included within the project management sub-area of the study by

Nasser and Ibrar [5], and the results showed that studies focused on the project planning

and monitoring, as well as project enactment. Although no evidence was presented on

value aspects, we have employed the list of primary studies that were selected within

the project management sub-area in order to select an initial seed for our snowballing

literature review.

 The project management literature often focus on the financial aspect of value that is

operationalized using the Net Present Value (NPV) or Earned Value (EV) concepts. For

example, Jordanger and Klakegg [10] pointed out that the value concept in a project is

often limited to the earned value gained by fulfilling the project’s scope. The authors

suggest using a utility function that combines monetary utility (NPV) and qualitative

utilities. The decision support is realized with the help of Multi Criteria Decision Anal-

ysis (MCDA). The paper lacks detailed view on how to break down the NPV and quali-

tative utilities into detailed characteristics that can be attributed to features or their qual-

ity attributes. The analysis remains on high level with functionality, flexibility and

community development as value components.

3. Research Methodology

We used snowball sampling to search for relevant literature [11]. There were two rea-

sons why we decided to use snowballing: 1) the two systematic mappings associated

with the studied phenomena were performed recently [4][5] and 2) performing the entire

systematic literature review would create a risk of a significant number of duplicates as

the search string will have to be greatly reused from the previous studies. Snowballing

is also recommended as a method for updating the existing literature reviews with new

findings [11]. The subsections that follow provide details of the review methodology

process.

 Research design 3.1.

We used guidelines provided by Wohlin [11] for performing the snowballing. The pro-

cess was divided into three steps detailed below: 1) identification of the start set, 2)

performing the snowball iterations, 3) data analysis and synthesis.

 Step 1 deriving the start set 3.2.

In this step, we reused the previous literature reviews [4][5] as a starting point towards

the start set identification. The first review is published in an international journal [4]

but does not primarily focus on project management aspect of software value. The sec-

ond review focuses on the project management aspect of software value but was not

published in a peer-reviewed venue. In addition, we reviewed all chapters from the

Therefore, we decided to screen the final sets of papers derived from both studies in

order to identify the start set for our study.

Both search strings were examined by the research team and a decision has been

made that they were appropriate also for this study, however too broad. As both litera-

64 From Requirements to Software: Research and Practice

ture reviews are recent (conducted in 2010 and 2014), the research team decided to re-

use these results instead of re-execution of these search strings. Another reason was that

citation analysis during snowballing is going to identify potential new papers from both

literature reviews.

The results from both literature reviews in terms of the final sets of the papers were

carefully examined with the following inclusion criteria: 1) is the candidate paper rele-

vant for the new study (has project management perspective on value), 2) was it pub-

lished in a peer-reviewed venue and 3) was it written in English. The order of screening

was title, abstract and (if necessary) full paper read.

To minimize wrong selection and the selection bias, the first and second authors in-

dependently screened the candidate papers and compared the results. Disagreements

were iteratively discussed and resolved in several meetings. No studies from the litera-

ture review by Khurum et al. [4] were included in the start set. Six studies out of 27 that

focused on the project management sub-area in the literature review by Nasser and Ibrar

[5] were selected as the start set [12][13][14][15][16][17]
1
. Finally, we also reviewed

the book about value-based software engineering edited by Biff et al. [27], but did not

find any chapter meeting the inclusion criteria.

 Performing snowball iterations 3.3.

We performed two iterations, both initiated by looking at the references. The references

were extracted into an Excel file, organized and independently judged by both research-

ers. Next, citations were extracted with the help of Google scholar. Google Scholar

provides a comprehensive database of citations that often include peer and non-peer

reviewed work. Despite increased screening effort, this brings the confidence that no

citations are missed in the analysis. The citations were also independently judged by the

two authors. After performing independent judgments, discussion meetings were held

where independent judgments were compared, analyzed and conflicts were resolved.

This was a pre-requisite to consider each iteration done and move on to the next one.

The inclusion criteria remained stable between the start set selection and the snowball-

ing iterations. We did not screen citations of citations for each considered candidate,

this was done in case an article was accepted to the next snowballing iteration.

 Data extraction and synthesis 3.4.

We performed several analysis steps here. Firstly, we performed thematic analysis with

the help of suggestions from the work of Cruzes et al. [18][19]. The thematic analysis

enabled us to perform metrics identification as a next step. We extracted the relevant

metrics by classifying similar value constructs with different names under the same

value metric. Next, we performed Rigor and Relevance analysis, supported by the

guidelines suggested by Ivarsson and Gorschek [26]. We graded low rigor studies as

studies that received the score from 0-1.5. Similarly, we consider studies as low relevant

if their relevance score was below 2. The results of the rigor and relevance analysis are

visualized in Fig 3, positioned into four quadrants (A, B, C and D).

1 The papers included in this review are marked with C1, C2, C3 etc…, please see the end of the refer-

ence record for their identification.

 The Project Management Perspective on Software Value: a Literature Review 65

 Validity 3.5.

Internal validity. We made an attempt to minimize the researcher bias by following the

guidelines for conducting snowballing suggested by Wohlin [25] and the quality as-

sessment criteria suggested by Ivarsson and Gorschek [26]. Moreover, the selection

criteria were extensively discussed among the researchers and written down to enable

consistency analysis and disagreement discussion.

Construct validity is concerned with the presence of potential confounding factors

that hinder achieving the planned study aims and objectives. In this case, the multiple

definition of software project management can be considered as one of the confounding

factors. In order to minimize this threat, we based our understanding of software project

management on the definition provided by the PMBOK
2
.

Conclusion validity is concerned with possible factors that made the data collec-

tion and analysis dependent on a specific researcher. We minimized the risk of missing

important papers by studying two previous systematic literature reviews and deriving

our start set from them. Furthermore, to objectively measure the quality of the identified

studies, we applied rigor and relevance criteria introduced by Ivarsson and Gorschek

[26]. Finally, both study selection and data extractions were extensively discussed and

reviewed among the authors of this study where disagreements were resolved and pro-

cedures were unified.

External validity is related to the ability to generalize the study findings. In this

case, the fact that the snowball start set is based on two systematic literature studies

increases the confidence of the start set objectivity. However, what remains to be further

investigated is the relevance of the identified value aspects since the identified studies

were conducted with low rigor and therefore provide weak empirical evidence. Moreo-

ver, there exists literature about agile estimating and planning, e.g. [28], however it is in

most cases not peer-reviewed and therefore was excluded from this study. Finally,

some authors, e.g. [29] or [30] address aspects associated with the main focus of this

study, but due to the usage of different vocabulary, terms and definitions, these studies

and probably some others are removed during the initial database search as they are

strongly related to software value without using the term neither in the title nor in the

abstract.

4. Results

This section presents the results of both snowballing iterations, visualized in Figures 1

and 2. We provide here also the results analysis and synthesis.

 First and second iteration results 4.1.

First iteration. The results from performing the first forward and backward snowball-

ing iterations are presented in Figure 1. During backward snowballing 93 references and

98 citations were screened. Paper C3 [14] received most citations (72) while paper C4

2 http://www.pmi.org/PMBOK-Guide-and-Standards.aspx

66 From Requirements to Software: Research and Practice

[15] has most references. 50 references and 11 citations were removed because they

were not peer-reviewed or they were books. 10 references in this iteration were not in

English and therefore removed. From the remaining candidates, 6 were removed based

on the abstract and 16 were removed after the full read of the paper and discussions

between the authors. The uncertainties based on the abstract screening were resolved

after reading the full papers. Three papers 2C7, 2C8 and 2C9 [22][21][23] were selected

to the next phase.

Figure 1. The first iteration results.

Second iteration. Three papers were included to the second snowball iteration

[21][22][23]. 51 references and 16 citations were examined in this iteration. 20 refer-

ences were not pair reviewed and 12 were removed based on the abstract screening, 18

were removed based on full read and 2 were not in English. The screening details are

depicted in Figure 2.

Figure 2. The second iteration results.

 The Project Management Perspective on Software Value: a Literature Review 67

Fig. 3. The results of the rigor and relevance analysis.

 Quality assessment 4.2.

We have performed quality assessment of the identified nine papers using rigor and

relevance scores [26]. We used the three perspectives on rigor and four perspectives on

relevance, including the scales suggested in [26]. The results are depicted in Figure 3.

Two papers scored 3 on relevance score (C5 [16] and C6 [17]) and 2 scored 2 on rele-

vance score (C1 [12] and 2C7 [21]). However, none of the above provided high rigor

since all scored 0.5 on rigor. Two papers (C4 [15] and 2C9 [23]) scored 0 on both rigor

and relevance. This is mostly due to the fact that these are position papers or poster with

very limited amount of provided information. Paper C2 scored 0.5 on rigor and 1 on

relevance while papers C3 and 2C8 scored 0.5 on rigor and 0 on relevance.

 Thematic analysis 4.3.

We synthesized the primary studies utilizing thematic analysis technique suggested by

Cruzes and Dybå [18][19]. In order to perform the synthesis, we first extracted the nec-

essary data from primary studies. Next, we identified the interesting themes from the

extracted data and grouped them into distinct categories. Finally, we evaluated the

trustworthiness of the themes by revisiting the rigor and relevance scored for each

68 From Requirements to Software: Research and Practice

theme. The resulting three themes of project management perspective on software value

are listed below.

 Financial analysis of a project 4.4.

Paper C3 [14] is similar to C2 [13] in regard that it focuses on delivering value rather

than exploring various value components. C3 focuses on applying the Incremental

Funding Method (IFM) that delivers “chunks” of value to the customers and in this way

optimizes the net present value (NPV). It introduces and interesting aspect on value

delivery which is time to value and allows better control over the cash flow. This rate at

which value is added to the customer is particularly applicable for fast-changing envi-

ronments. Paper C3 criticizes net cash and ROI as example approaches to value delivery

as they may contribute to the discounted cash flows. IFM is based on minimum market-

able features that are self-contained and can be delivered quickly to the customer. The

paper mentioned decreasing architecture value (similar to architecture related internal

business perspective value components in the SVM). Apart from that, no value compo-

nents are suggested by this study. Both C2 and C3 received low rigor and relevance

scores which limit the ability to draw strong conclusions from these studies.

Halling et al. [15] (C4) advocate that the current value-based software engineering

strategies are cost-oriented or focused on reducing project-level risks and strive for

providing a broader model of value creation in software engineering. They adapt the

value chain model from Porter [20] to software engineering specifics as well as perform

a cost benefit analysis of software products and processes. Halling et al. also mention

intangible benefits (like paper C1 by Wagner and Dürr [12]) in terms of increased flexi-

bility and information gain and suggest using known existing corporate finance valua-

tion techniques, e.g. discounted cash-flow and real option theory for supporting devel-

opment projects.

Halling et al. also discuss the issue of asymmetric information in software engineer-

ing project management, e.g. developers bring better feature effort estimates than cus-

tomers. Finally, the paper brings two interesting perspectives on value-management: 1)

modeling uncertainty during the risks analysis phase should also consider unexpected

positive outcomes and 2) the project’s environment has an influence on the value deliv-

ery process. The main issue with this work is that it mixes up project with process and

product perspectives. The paper scored 0 on both rigor and relevance which is an indi-

cation that the suggestions, although interesting, would have to be empirically evaluated

before putting in practice.

Alencar et al. [22] focus on value from the nonessential modules that may positive-

ly impact the value of the essential modules. These features are also called enablers [24].

The nonessential features are characterized as minimum marketable features modules

(NMMFs), introduced in paper C3 [14]. The authors suggest that early identification of

nonessential elements may affect the final value of a project, however what value com-

ponents they may affect is not provided. The work provides some example of incre-

mental value delivery via a chain of software units that are estimated using net present

value and cash flow elements. Different scheduling options and their impact on the final

value are discussed. The concluding advice is that a project team should examine the

effect of non-essential software units before selecting any scheduling option.

 The Project Management Perspective on Software Value: a Literature Review 69

Ereno and Cortazar [23] propose applying the impact of relationships (IOR) meas-

ure defined as “the amount of interactions that the social media participants have with

their community and how that relationship has impacted the totality of the product”.

The authors list the following measures associated with IOR:

 Customer expected value (it corresponds to the customer perceived value in

SVM [4]),

 Product line value - corresponds to the Internal Business perspective and Phys-

ical value in relation to quality and Product Architecture
3

 Real value (the amount of features that the software product line offers for a

specific stakeholder) – corresponds to the Physical Value in relation to Product

architecture Functionality value component and also include all implemented

features that may not be noticed by the customer.

 Potential Value – this aspect is similar to Customer Perspective perceived val-

ue and pragmatic value components if we think about implemented or deliv-

ered features that may not be used by the users. If we take another perspective;

potential value of the features that exist in a product line but were not delivered

in a product than the most similar SVM component is the Physical Value in re-

lation to Product architecture Functionality from the Internal Business Perspec-

tive.

 Not Covered Value – the features that the SLP do not cover. The rap between

customer expectations and the Real Value (RV). This is little related to Cus-

tomer Perspective pragmatic value but greatly uncovered in the SVM.

The paper, although interesting, scored zero on both rigor and relevance because it

does not go into details and presents tangible value components that can be applied in

product or project management.

To summarize, the financial analysis of a project category brings some interesting

discussions and suggestions in relation to how to connect value with the financial as-

pects. However, the focus of these papers is mainly on the exploring the financial part

of the equation while the value concept is left with little consideration. Moreover, the

papers in this category have low rigor and relevance.

 Risk analysis within a project 4.5.

Huang et al. [13] present the VBSQA process framework for value propositions identi-

fication with respect to quality attributes, understood as prioritization of expected and/or

desired values. The potential conflicts between different stakeholders’ views on quality

attributes are evaluated with the help of risk analysis methods. This helps to avoid prob-

lems associated with delays or low quality deliveries. The high-level question that the

method attempts to answer is: how much investment in quality is enough?

The authors provide three example strategies for delivery quality to the stakehold-

ers: 1) schedule-driven, 2) market trend-driven and 3) product driven. For each of them,

the authors discuss the quality and schedule risks, the suggested architecture and refac-

3 The Software Value Map is available at http://softwarevaluemap.org/

70 From Requirements to Software: Research and Practice

toring approaches as well as the nature of requirements. The schedule-driven business

case delivers value by rapidly accommodating small product update requirements. For

the product-driven business case, the quality of the product is the main concern rather

than the functionality. Finally, for the market trend-driven business case the products’

upgrades are based on competitors’ activity. Albeit the study discusses how to deliver

value to the customers, it does not provide any value components that can be used in

SVM. This study scored 0.5 on rigor and 1 on relevance.

Huang [13] proposes a value-based dependability analysis framework for software

projects. The method measures the software dependability achievement based on a

scenario-based approach to identify stakeholders’ value propositions with respect to

dependability. The project requirements are derived from the dependability attributes.

One of the steps in this method is to identify high level value propositions. Based on the

example from NASA, the top level dependability attributes include availability, accura-

cy, performance, usability, cost and schedule. From the identified scenarios, risk analy-

sis is performed with potential value losses if scenario execution fails. Unfortunately, no

detailed value components are identified by this study. The paper scored 2 on rigor and

2 on relevance making it one of the papers in this study that can be trusted the most.

To summarize, this category provides two studies that focus on expanding the risk

identification and analysis techniques for providing improved value to the customers.

Unfortunately, equal focus is not put on the exploration of the value components that

should be taken into consideration when performing project risk analysis. Therefore, we

cannot suggest any additions to SVM based on the work presented in this category.

4.5.1. Process improvement based on project assessment

Paper C1 by Wagner and Dürr [C1] proposed a five step method that enriches the

“earned value” concept with other important value aspects and supports project manag-

ers in value planning. The process involves defining and monitoring process values

during the project. Wagner and Dürr [C1] also concluded that value brings important

benefits to the stakeholders both tangible and intangible (economic, social, monetary or

utilitarian).

During the process value definition phase, the value-based project measures (gath-

ered as expectations during the brainstorming sessions) are identified and mapped to the

organization’s KPIs. The identified expectations are mapped on four perspectives: pro-

cess perspective, customer perspective, financial perspective and potential perspective.

These perspectives overlap to a large degree with the SVM perspectives.

The provided examples are mostly cost driven and represented by variations of ef-

fort put in various phases. Two measures are interesting for this study: the Project Man-

ager’s team management capability and Systems Engineer’s coaching capability. The

paper seems to focus on requirements engineering and system design perspectives with-

in a project.

Ojala [16] applied value engineering principles for collecting experiences in using

value assessment of project management tasks. The focus here is also on finding the

differences between project management tasks valuation. According to value engineer-

ing principles, value is associated with some object, product, service of process and is

the ratio between the worth (the least cost to perform the required function or its func-

 The Project Management Perspective on Software Value: a Literature Review 71

tional equivalent) and the cost. Another definition of value include (function + quality)

divided by cost.

Ojala provides four ways of assessing value in software projects: 1) an addition of

defined VE process into the existing process models, 2) value assessment for processes

defined in used process models, 3) value assessment for processes without a process

model and 4) value assessment of a product.

From the interviews at a large company, it appears that the valuation is performed

by assessing the worth of project management asks. These seem quite familiar to re-

quirements or features and are later prioritized by customers and vendors. No additional

value attributes are introduced in this paper.

Itaborahy et al. [17] propose a method for project value factors identification and

how they can be monitored throughout the project. The suggested approach is designed

to help project management in selecting and executing projects that will bring value and

generate business returns. The paper associated with the IT investment perspective on

project management and how IT leads to value generation by: 1) aligning the compa-

ny’s strategic goals with software project’s goals and 2) generating IT assets from these

goals.

Itaborahy et al. [17] list ten determinant factors of value in a software project: 1)

strategic objective, 2) business process, 3) business transformation, 4) benefits, 5) con-

version process, 6) integration process, 7) competition process, 8) time, 9) costs and 10)

risks. These factors only focus on generating IT assets rather than aligning the compa-

ny’s and project’s goals.

The suggested approach for software project management based on value includes

the value model as one of the key components. This value model includes the organiza-

tions’ expectations of project value in terms of: strategic objectives, the business pro-

cess to be modified and the required business transformation that enables this success.

The value model is accompanied by complementation initiatives, market and project

scenarios. No additional or details value components are provided by this paper.

5. Suggested extensions to the software value map

Based on the literature survey results, we suggest the following additions to the SVM:

1. Intangible learning benefits [15] – should be added to the Internal Business

Perspective of SVM as a value component that enables increased flexibility

2. Social or utilitarian benefits for stakeholders should be added to the Customer

Perspective of SVM [12]

3. Intangible learning benefits [15] should also be added to the Innovation and

Learning perspective as we believe some benefits are much more long term

and can enable innovation and facilitate learning. The reason is that there could

be intangible learning benefits valid within a single project and universal for

the entire organization.

4. Value from nonessential modules or features [22] (enablers) should be added

to: Internal Business Perspective, Production Value, Physical Value wrt. Quali-

72 From Requirements to Software: Research and Practice

ty, PVq Product Architecture, Functionality. Moreover, the same value branch

should be expanded with the notion of Real value identified in [4].

5. The amount of interactions that a feature creates [23] (in the social context) –

this aspect should be added next to the Network Externalities in the Customer

Lifetime value and Value for Customer part of SVM. Here the difference and

novelty is that the interactions are created between the features not the users of

a feature as so far suggested by the SVM.

6. The Project Manager’s team management capability – this could be added to

the Internal Business Perspective, Production value, Physical value, Physical

value wrt. Quality and PVq Organization. We believe that the management ca-

pability is an additional value of the organization that can be monetized by the

software companies. Team management capability is also highly relevant for

project management as projects deliver the production engine for product man-

agement and actually realize features. Managing teams in this case is highly

relevant and critical for success.

7. The Systems Engineer’s coaching capability - this could be added to the Inter-

nal Business Perspective, Production value, Physical value, Physical value wrt.

Quality and PVq Organization. The ability to coach on system engineering

concepts is highly relevant and required for projects where knowledge about

new technologies needs to be quickly grasped and extended.

8. The value from the project’s environment – this should be added to the Internal

Business Perspective, Production Value, Physical value wrt. Quality, PVq or-

ganization. Each organization operates in a given environment and the impact

of this environment should be detailed and estimated in this value component.

6. Conclusions and future work

In this paper, we present the results from a literature review study with an aim to com-

plement the current view on software value with the project management perspective.

We have based our literature review on two previous literature surveys [4][5] and per-

formed snowballing in two iterations. We identified nine publications that were ana-

lyzed and summarized into three categories: financial aspect of software value, risk

analysis within a project and process improvement based on project assessment. From

the identified publications, we extracted eight additional value components for the pre-

viously published Software Value Map (SVM) concept.

In future work, we plan to empirically evaluate the new value aspects suggested

from the surveyed literature. In particular, we are interested in expanding the financial

aspect of software value in the project and confront the additional aspects that we sug-

gested with industry view on the financial aspects of software projects.

 The Project Management Perspective on Software Value: a Literature Review 73

7. References

[1] Aurum, A., Wohlin, C. and Porter, A., "Aligning Software Project Decisions: A Case Study,"
International Journal of Software Engineering and Knowledge Engineering, vol. 16, pp. 795-818, 2006.

[2] Harmon, R. R., and Laird, G. "Linking marketing strategy to customer value: implications for

technology marketers," in Innovation in Technology Management - The Key to Global Leadership.
PICMET '97: Portland International Conference on Management and Technology, 1997, pp. 896-900.

[3] Jeffery, R. Value-Based Software Engineering. Germany: Springer, 2006.

[4] Khurum, M., Gorschek, T., and Wilson, M., "The software value map - an exhaustive collection of
value aspects for the development of software intensive products," Journal of Software: Evolution and

Process, 2012.

[5] Naseer, J., and Ibrar, M., “Systematic mapping of value-based software engineering – a systematic
review of value-based requirements engineering”, Masters thesis Software Engineering, Thesis no:

MSE-2010:40, Blekinge Institute of Technology, Karlskrona, December 2010.

[6] Gorschek, T., Fricker, S., and Palm, K., "A Lightweight Innovation Process for Software-Intensive
Product Development," IEEE Software, vol. 27, 2010.

[7] Kontio, J., Ahokas, M., Poyry, P., Warsta, J., Makela, M.M., and Tyrvainen, P., "Software Business

Education for Software Engineers: Towards an Integrated Curriculum," in Software Engineering
Education and Training Workshops, 2006. CSEETW '06. 19th Conference on, 2006, pp. 5-15.

[8] Lei, Z., Shouju, R., Procopio Garcia, F., and Zuzhao, L., "Multiple-value decision supporting

application in software production facing global market," in Systems, Man, and Cybernetics, 2000
IEEE International Conference on, 2000, pp. 346-351.

[9] Rönkkö, M., Frühwirth, C., and Biffl, S., "Integrating Value and Utility Concepts into a Value

Decomposition Model for Value-Based Software Engineering," in Product-Focused Software Process
Improvement. vol. 32, F. Bomarius, M. Oivo, P. Jaring, and P. Abrahamsson, Eds., ed: Springer Berlin

Heidelberg, 2009, pp. 362-374.

[10] Jordanger, I. Klakegg, O. J., “Value Management Beyond Earned Value”, PM World Journal, vol. 2(2),
Feb 2013, pp. 2-12.

[11] Wohlin, C., "Guidelines for Snowballing in Systematic Literature Studies and a Replication”, Proceed-
ings 18th International Conference on Evaluation and Assessment in Software Engineering (EASE

2014), pp. 321-330, London, UK, May 2014.

[12] Wagner, K. W., Durr, W., "A Five-Step Method for Value-Based Planning and Monitoring of Systems
Engineering Projects," 32nd EUROMICRO Conference on Software Engineering and Advanced Appli-

cations, SEAA '06, pp.282 - 290, 2006 (C1).

[13] Huang, L., Hu, H., Ge, J., Boehm, B., Lü, J., “Tailor the Value-Based Software Quality Achievement
Process to Project Business Cases”, Software Process Change, Lecture Notes in Computer Science, vol

3966, pp. 56-63 (C2).

[14] Denne, M., Cleland-Huang, J., "The incremental funding method: data-driven software development,"
Software, IEEE , vol.21, no.3, pp.39,47, May-June 2004 (C3).

[15] Halling, M., Biffl, S., Grünbacher, P. “The Role of Valuation in Value-Based Software Engineering”,

6th International Workshop on Economics-Driven Software Engineering Research Proceedings", IEE,
2004, pp. 7 – 10 (C4).

[16] Ojala, P. “Value of project management: a case study”. WSEAS Trans. Info. Sci. and App. 6, 3 (March

2009), 2009, pp. 510-519 (C5).
[17] Itaborahy, A., De Oliveira, K., and Santos, R. “Value-based software project management - A business

perspective on software projects”, International Conference on Enterprise Information Systems - ICEIS ,

pp. 218-225, 2008 (C6).
[18] Cruzes, D. S., and Dyba, T. “Research synthesis in software engineering: A tertiary study.” Information

and Software Technology, 53(5):440--455, 2011.

[19] Cruzes, D. S., Dyba, T., Runeson, P., and Host, M., “Case studies synthesis: A thematic, cross-case, and
narrative synthesis worked example. Empirical Software Engineering, Accepted for publication, 2014.

[20] Porter, M.E., “Competitive Advantage: Creating and Sustaining Superior Performance”. Free Press,

New York, 1985.
[21] Huang, L., “A Value-Based Process for Achieving Software Dependability”, Proceedings of Interna-

tional Software Process Workshop (2005), Beijing, China. LNCS, Springer Verlag (2C7)

74 From Requirements to Software: Research and Practice

[22] Alencar, A. J., “Unleashing the potential impact of nonessential self-contained software units and flex-
ible precedence relations upon the value of software”, Journal of Software, Vol 6, No 12 (2011), 2500-

2507, Dec 2011 (2C8)

[23] Ereño, M. and Cortázar, R. 2010. Getting the product value with IOR. In Proceedings of the 11th Inter-
national Conference on Product Focused Software (PROFES '10). ACM, New York, NY, USA, 118-119.

(2C9)

[24] Wnuk, K., "Visualizing, Analyzing and Managing the Scope of Software Releases in Large-Scale Re-
quirements Engineering" , Doctoral Thesis, October 2013

[25] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., ”Experimentation in Soft-

ware Engineering, an Introduction”, Springer 2012
[26] Ivarsson, M., Gorschek, T., “A method for evaluating rigor and industrial relevance of technology eval-

uations”, Empirical Software Engineering, vol. 16 June 2011, pp. 365-395.

[27] Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., & Grünbacher, P. (Eds.). (2006). Value-based software
engineering. Springer Science & Business Media.

[28] Cohn, M. (2005). Agile estimating and planning. Pearson Education.

[29] Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., ... & Shapochka, A. A Case Study in Lo-
cating the Architectural Roots of Technical Debt. CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST, 2015

[30] Racheva, Z., Daneva, M., & Sikkel, K. Value creation by agile projects: methodology or mystery?. In
Product-Focused Software Process Improvement (pp. 141-155). Springer Berlin Heidelberg, 2009.

II. Modelling and Code Generation

Chapter 5

Towards creating complete

business process models

1. Introduction

Development of the Business Process Model and Notation (BPMN) [18] lies on one

of the branches of the Unified Modeling Language (UML) [20] evolution. Similarly as

the UML, the BPMN is a semi-formal language but unlike the UML, it is concerned

only on the initial stage of software systems development. Its main goal is to present a

model of an organization or a company being the domain of application of a future

information system. Such models are called business or domain models. In modeling,

emphasis is put on processes related to this domain. The notion of a process is the most

important. The term “business process” refers to the function (service) performed within

the organization. The process is defined as a sequence or flow of activities in an

organization with the objective of carrying out work, and is depicted as a graph of flow

elements, which are a set of activities, events, gateways, and sequence flows that adhere

to finite execution semantics [18].

BPMN models describe private (internal) business processes in an organization (e.g.

a company, a company division), and their collaboration with public (external) business

processes in the environment of the organization (e.g. a consumer, a seller). The models

are presented in a graphical notation, easily understandable by all business stakeholders

– business analysts, IT specialists, and organization/company managers [18]. The

notation is based on a flowcharting technique similar to the activity diagrams from the

UML. A process determines a partially ordered set of business activities that represent

the steps required to achieve a business objective. The order results from the flow of

control and the flow of data among the activities.

Although BPMN is not declared as a data flow language, in fact, there are two

forms of data exchanged between processes and activities: a message flow that depicts

the contents of communication and an object flow that depicts a data object reference

with its state. BPMN does not itself provide a built-in model for describing the structure

of data or a querying language for that data but allows for the co-existence of multiple

data structure and querying languages within the same model. Additionally, tool

vendors are encouraged to include such languages to their products with commitment to

keep compliance with the data modeling defined in the BPMN specification.

BPMN is constrained to support only the concepts of modeling that are applicable

to business processes. Therefore, the following aspects are out of the scope of the

BPMN specification [18]:

78 From Requirements to Software: Research and Practice

 definition of organizational models and resources,

 modeling of functional breakdowns,

 data and information models,

 modeling of strategy,

 business rules models.

It should be noted that a very important aspect concerning data and its structure is

omitted from BPMN specification. In spite of BPMN transition from BPMN 1.0 to 2.0,

this claim is still valid [7]. For example, elaboration of the conceptual database model

requires information about data types and their relationships. This observation gives rise

to the natural idea of integration of BPMN diagrams with these UML diagrams that

describe the data structures and methods of their processing. The precise and complete

business model plays the fundamental role for the further system development.

Especially, it strongly influences on a quality of the final software product. We propose

a novel approach to business modeling basing on the compound models, i.e. the BPMN

diagrams integrated with the UML class diagrams and UML state machine diagrams.

Even though both BPMN and UML models are widely described and researched, the

added value of the proposed approach is a result of linking these well-known elements.

Chapter is structured as follows. The next Section gives a review of related works.

In Section 3, the definition of the compound BPMN model is presented. Section 4

provides a simple example illustrating the application of the compound BPMN model,

and the last Section completes the Chapter with concluding remarks.

2. Related works

The question: “How to build a good model of a business process?” can be used to pro-

perly define the context of our consideration (similar questions were stated in [15] and

[23]). This question entails two more detailed questions: “What is a good model?” and

“Which methodology would be recommended for effective model construction?”.

Unfortunately, up to now, there have been no satisfying answers to these questions. The

conclusion of the paper [27] from 2006 is still valid: there is no well-established mo-

deling standard in this area. A similar conclusion emerges from the current compre-

hensive overview of the literature on the quality of business modeling [16]: there is a

lack of an encompassing and generally accepted definition of business process modeling

quality. Having these findings in the background, we concentrate on BPMN only. There

may be many issues relating to BPMN, for example: “Whether BPMN is a good enough

modeling language?” and “Do the existing tools provide an adequate support for the

modeling using BPMN?”, etc. In further, we consider some aspects regarding the first

issue, however, it should be noted that the assessment of BPMN was considered in

some publications, e.g. [1], [3], [21].

BPMN is one of numerous modeling standards (e.g. XPDL, BPEL, BPMN, EPC,

and UML Activity Diagrams) developed in last two decades. BPMN seems to be one of

the most popular business modeling languages, which does not mean that it is not the

object of numerous critics and polemics [3], [9], [21]. It seems that the primary cause

of disputes is the lack of a common or, at least, a widely accepted approach for

modeling business processes. There are some currently prepared proposals, e.g. [2], [4],

 Towards creating complete business process models 79

[10], [11], [17], [22], but they all base on specific assumptions regarding a field of

application or modeling languages.

Let us remind the reader that a business model is supposed to express intuitive

ideas, thus supporting communication among users, and thus delivering information

necessary to specify the requirements for the future software system. Therefore, a

modeling language should have sufficient expression power enabling the presentation of

all interesting structural and behavioral features from the domain of interest.

Additionally, the language should have a satisfactory level of formality that will allow

to check consistency and completeness of a model expressed in this language.

Has the BPMN enough expression power? At the beginning, it should be noted that

BPMN enables only partial description of the domain of interest. Namely, BPMN

concentrates on a specification of business participants and the types of processes

performed, i.e. the types of mutually offered services. But even in this scope we observe

that BPMN models seem to suffer from incompleteness. It results from the fact that the

BPMN puts stress on the description the structures of processes with skipping details of

the processed data objects.

3. A compound model of a process

BPMN 2.0 specification [18] defines the so called item-aware elements that may

represent both physical or information items, and which are stored and conveyed during

process execution. Data objects, representing information items, are specialization of

item-aware elements. There are four elements that represent data: data objects, data

inputs, data outputs and data stores. Data objects are identified by names but the

specification does not define their internal structure. Data inputs and outputs are used to

show data that are produced during or as a result of execution of processes. Data stores

provide mechanisms to retrieve or update stored information.

Figure 1. DataObject class diagram according to [18]

80 From Requirements to Software: Research and Practice

Data objects in BPMN are defined by DataObject class from the specification pre-

sented in fig. 1 [18]. The DataObject inherits the attributes and model associations of

FlowElement and ItemAwareElement classes. DataObjectReference class is used to

reuse data objects in the same model. The DataObject can optionally reference

DataState class, which is used to specify different states of the same DataObject at

different points in a process. BPMN 2.0 specification does not define the states, e.g. the

possible values and semantic, but it introduces an extensibility mechanism that allows

extending the standard. Therefore using the state element and the BPMN extensibility

capabilities one can define the object states more precisely.

Following [5], modeling business processes without modeling the processed objects

would be rather poor. Therefore, it seems to be beneficial to create compound models of

processes that would take into account all the details regarding processed data. To fulfill

this postulate, UML class diagrams can be incorporated into the compound model. In

this way some data objects represented on a process diagram will have references in the

class diagram. More precisely, more information is carried if a data object on the

process diagram has an instance of a respective class on the class diagram. Moreover,

data objects may change their states during the execution of a process. Usually, these

changes are subjected to some constraints. These constraints can be clearly presented by

UML state machine diagrams.

Finally, the proposed compound model of a BPMN process CMBPMN consists of a

set of three types of diagrams: a process diagram, a class diagram, and a state machine

diagram:

CMBPMN = <PDBPMN, CDUML, SMDUML>

where:

 PDBPMN is a set of BPMN 2.0 Process Diagrams which illustrate a needed

business process,

 CDUML is a set of UML Class Diagrams whose role is to describe the structure

of a system by showing the classes with attributes and operations, and the

relationships between the classes,

 SMDUML is a set of UML State Machine Diagrams which are aimed for a given

class to describe transitions between the states of its objects together with the

events that trigger transitions between the states.

The figure 2 presenting relationships between process diagrams, class and state ma-

chine diagrams, components of the compound model, looks like a metamodel of the

compound model. However, formally it cannot be treated as a metamodel because the

metaclasses: BPMNProcessDiagram, UMLClassDiagram and UMLStateMachine-

Diagram are not formally defined in BPMN or UML specifications. These specifica-

tions define only components of diagrams. For example, structural constructs (e.g.

classes, components) used in the CDUML are defined in the Classes package in “Subpart

I - Structure” section of the UML Superstructure specification [20]. Similarly, “Subpart

II - Behavior” section in [20] specifies the dynamic behavioral constructs, e.g. state

machines used in SMDUML.

The compound model CMBPMN consists of PDBPMN, CDUML and SMDUML diagrams

that are interrelated in a way shown in fig. 2. The compound model CM should always

have at least one PDBPMN diagram and any number of related CDUML diagrams. In

practice, only in trivial cases will the compound model not contain any class diagrams

 Towards creating complete business process models 81

or state machine diagrams. The metaclass CompoundModel is not navigable from

metaclasses BPMNProcessDiagram, UMLClassDiagram and UMLStateMachine-

Diagram. BPMNProcessDiagram and UMLClassDiagram metaclasses are associated

with each other as they together complement the description of the process.

BPMNProcessDiagram metaclass derives states of data objects so it is associated with

UMLStateMachineDiagram. UMLStateMachineDiagram metaclass is associated with

BPMNProcessDiagram as it shows more information about some of its data objects.

Finally, UMLClassDiagram is associated with zero or more UMLStateMachineDiagram

metaclasses by providing more details about the described objects. Similarly, each

UMLStateMachineDiagram metaclass is associated with zero or more UMLClass-

Diagram metaclasses by showing states and transitions of the objects.

Figure 2. The structure of the compound model.

4. Example of a compound model

The following example is aimed to depict the idea of a compound model. It presents a

business process of ordering and manufacturing windows (please note, “windows” here

are understood as “window products”, the openings in walls). More specifically, the

model illustrates all important stages of the production process, from the acceptance of

an offer for windows, through the completion of components and raw materials and

finally, shipment of the windows to the customer. An example BPMN process diagram

(fig. 3) has many data objects. Three of them − an offer, an order and a contract − have

also states that depict how the objects are updated within the process. The presented

compound model is composed of the following diagrams: a process diagram (fig. 3), a

complementary class diagram (fig. 4) and three derived state machine diagrams (fig. 5).

The BPMN process diagram (fig. 3) has three lanes for three parties involved in the

process: a customer, a point of sale and a manufacturer. Due to the fact that we want to

model the interaction between the parts explicitly, they have been classified as

participants. In order to make the example easily readable, some simplifications of the

real process have been adopted. First of all, the process describes an internal point of

sale of the manufacturer and its interaction with the customer. It often happens in reality

that manufactures apart from the internal points of sale also have a distributed network

of the external dealers, who sell final products to customers. To support this situation,

82 From Requirements to Software: Research and Practice

the process should be extended by additional communication and the accounting of

payments using, for example, trade credits and individual discounts for different dealers.

This would require introducing additional data objects and additional state machine

diagrams related to the BPMN process model. Another simplified element of the

diagram is a process of gathering information about all windows that should be

produced, e.g. their dimensions, features and additional requirements. In many cases,

dealers measure windows by themselves and the role of the customer is reduced to only

making it possible to conduct all the necessary measurements on a construction site. A

simplification was applied also in the process of gathering and selecting the production

orders. The diagram presents only a general view on the production orders and the

further steps leading to a final product. The production of windows is presented as a

sub-process. The decision how to organize, optimize and select production orders before

sending them to the production and the organization of the production are beyond the

scope of the diagram.

These and other simplifications were adopted in order to improve the overall

understanding of the BPMN model with the aim of not changing the real process much.

In practice, every window manufacturer produces and organizes the production and sale

differently because there are many possible solutions depending on many internal and

external factors. The main reasons for different organizations are: the available

machinery park, the organization of the sales, choice of the profile materials (PVC,

aluminum or wood), historical decisions, the region and habits of employees.

Some data objects introduced in the BPMN process diagram also appear in the

UML class diagram, which provides the additional information. Let us consider an offer.

The data object Offer from fig. 3 has its counterpart class named Offer in fig. 4. The

class has not only the internal attributes and operations but also the associations to other

classes in the diagram. Class associations, which can be adorned with role names,

ownership indicators, multiplicity, visibility, and other properties, significantly increase

the amount of information available for the data objects which are specified just by a

name with an optional status on BPMN process diagrams. Moreover, BPMN process

diagrams describe services in terms of sequence of processes and messages that flow

between the participants in different activities. In the example, a customer and a point of

sale pools exchange message flows and the Offer data object is associated with tasks

and sub-process within the pools. More details are provided on a class diagram, where

we can see that many sellers may work in a concrete point of sale (Seller class has an

attribute worksInPointOfSale), but a concrete Offer will be prepared by one specific

Seller. These additional information may later be used to design better user interfaces. It

also has a pragmatic aspect as the compound model can be easier understood than the

standalone BPMN process diagram.

 Towards creating complete business process models 83

Figure 3. Example of the compound model: a BPMN process diagram.

84 From Requirements to Software: Research and Practice

Figure 4. Example of the compound model: a UML class diagram.

Figure 5. Example of the compound model: UML state machine diagrams.

5. Conclusions

The first part of the Chapter introduces an approach to business modeling that is based

on the integration of BPMN process diagrams with UML class diagrams and UML state

machine diagrams. The diagrams are interrelated and together constitute the compound

model. The second part of the Chapter presents an example of the compound model

with the explanation of the benefits of using the described approach.

The proposed compound BPMN process diagram and the illustrating example give

rise to the question: “How to build such compound diagrams?”. As it is clear from the

review of the literature, there is no commonly accepted way of business modeling. The

 Towards creating complete business process models 85

main causes are a huge variety of scope and way of presenting of information, which are

the basis for business modeling.

Usually the information is provided in the form of written or electronic documents

in a variety of ways associated with the described area. On the one hand, these

documents may contain information irrelevant to the modeled areas, on the other hand

they may not contain all the necessary information. Therefore, usually at the beginning

of the modeling an overview of important concepts is done. This overview forms a

glossary of terms representing these concepts. Before further modeling steps all terms

from the glossary should be validated. Next, what is often applied in practice, first a

class diagram and then a process diagram are created. The class diagram represents the

concepts from the glossary with the relationships among them. This justifies why class

diagrams are proposed for compound BPMN process models. In the alternative

proceeding, first a process diagram and then a class diagram are created. Both

sequences of diagram derivations do justify the usefulness of the class diagrams in the

proposed compound BPMN process models. Attaching state machine diagrams to the

model is now a natural consequence of the presence of class diagrams.

It should be underlined that the compound models, contrary to the usual BPMN

models, comprise both entirely static and dynamic aspects of the business domain.

It is also worth noting that the compound model could be particularly justified

when we have a specific domain ontology providing basic information about the mode-

led domain. All ontologies take into account the static aspect and only a few

additionally take into account the dynamic aspect. In this situation, creation of a class

diagram as the first one is strongly justified.

The outlined approach to business modeling based on the proposed compound

model requires further research. The first practical task seems to be developing a tool

supporting edition and controlling integrity of the compound model. Optionally, it

would be expected to have a tool supporting the verification of the correctness of the

compound models against the domain with the use of the domain ontologies. Similarly,

in [6] it is suggested that knowledge from the ontologies should be transferred to the

software applications. More precisely, it is recommended that a method and a tool for

automatic transformation of selected fragments of domain ontology directly to models

should be developed.

References

[1] G. Aagesen, and J. Krogstie, Analysis and design of business processes using BPMN. Handbook on

Business Process Management 1. Springer Berlin Heidelberg, 2010. 213-235.
[2] T. Allweyer, Human-Readable BPMN Diagrams, in: [7], p. 217-232.

[3] E. Börger, Approaches to model business processes: a critical analysis of BPMN, workflow patterns and

YAWL, Software Systems Modeling, vol. 11, 305-318, 2012.

[4] M. Cortes-Cornax et.al., Using intensional fragments to bridge the gap between organizational and

intensional levels, Information and Software Technology, vol. 58, 1-19, 2015.

[5] S. Drejewicz, Zrozumieć BPMN modelowanie procesów biznesowych, Wydawnictwo Helion, 2012.
[6] I. Dubielewicz, B. Hnatkowska, Z. Huzar, and L. Tuzinkiewicz, Domain Modeling in the Context of

Ontology. Foundations of Computing and Decision Sciences, 40(1), 3-15, 2015.

[7] L. Fischer (ed.), BPMN 2.0 Handbook. Methods, Concepts, Case Studies and Standards in Business
Process Modeling Notation, Future Strategies Inc., 2012

[8] J. Freund, M. Schrepfer, Best Practice Guidelines for BPMN 2.0, in: [7], p. 203-215.

86 From Requirements to Software: Research and Practice

[9] D. Gagné, Addressing some BPMN 2.0 misconceptions, fallacies, errors, or simply bad practices, in: [7],
p. 113-124.

[10] F. Heidari, P. Loucopoulos, Quality evaluation framework (QEF): Modeling and evaluating quality of

business processes, International Journal of Accounting Information Systems, vol. 15, 193-223, 2014.
[11] J. Kotremba, S. Raβ, and R. Singer, Distributed Business Process – A Framework for Modeling and

Execution, arXiv:1309.312v2 [csMA], 18 May 2014.

[12] R. Laue, A. Awad, Visual suggestions for improvements in business process diagrams, Journal of Visual
Languages and Computing, vol. 22, 385-399, 2010.

[13] O.I. Lindland, G. Sindre, and A. Sølvberg, Understanding quality in conceptual modeling, Software

IEEE, Volume: 11, Issue: 2, 42-49, 1994.
[14] A. Marat and J. M. Gómez, “Derivation of Event-Based State Machines from Business Processes,” Int.

Conf. New Trends Inf. Commun. Technol. Almaty Kazakhstan, 2014.

[15] P. Mohagheghi, V. Dehlen, and T. Neple, Definitions and Approaches to Model Quality in Model-based
Software Development - A Review of Literature, Information and Software Technology, 1646-1669,

2009.

[16] I. Moreno-Montes de Oca et. al., A systematic literature review of studies on business process modeling
quality, Information and Software Technology, vol. 58, 187-205, 2015.

[17] G. Navarro-Suarez, J. Freund, and M. Schrepfer, Best Practice Guidelines for BPMN 2.0, in: BPMN 2.0

Handbook First Edition, 1st ed., Future Strategies Inc., 2010, pp. 151–165.
[18] OMG, Business Process Model and Notation (BPMN), Version 2.0, 2011.

[19] OMG, Business Process Definition MetaModel, Volume I: Common Infrastructure, Volume II: Process

Definitions: http://www.omg.org/spec/BPDM/1.0
[20] OMG, Unified Modeling Language,Version 2.5, Doc. No.: ptc/2013-09-05,

http://www.omg.org/spec/UML/2.5

[21] W. Reisig, Remarks on Egon Börger: Approaches to model business processes: a critical analysis of
BPMN, workflow patterns and YAWL, Software Systems Modeling, vol. 12, 5-9, 2013.

[22] R. M. Pillat et. al., BPMNt: A BPMN extension for specifying software process tailoring, Information

and Software Technology, vol. 57, 95-115, 2015.
[23] J. Pitschke, Business Vocabulary, Business Rules and Business Process – How to Develop an Integrated

Business Model?, Presentation at the Business Rules Forum 2010, Washington, DC.

[24] M. Sadowska, An approach to assessing the quality of business process models expressed in BPMN,
e-Informatica Software Engineering Journal (accepted for publication), 2015.

[25] R.M. Shapiro, Reference Guide XPDL 2.2: Incorporating BPMN 2.0 Process Modeling Extensions, in:

[7], 267-279.
[26] B. Silver, Elements of BPMN Style: Leyel 2, in BPMN method and style, 2nd ed., Aptos: Cody-Cassidy

Press, 2009.

[27] W. Wang, A Comparison of Business Process Modeling Methods, 2006 IEEE International Conference
on Service Operations and Logistics, and Informatics, 1136-1141, IEEE, 2006.

Chapter 6

Towards automatic Sumo to UML

translation

1. Introduction

Domain model is a key development artifact. It captures the most important types of

objects in the context of the domain, i.e. the entities that exist or events that transpire in

the environment in which the system works [1, 2]. Domain models, beside a glossary,

and business object model, are used to document the domain in which the system

executes. It serves as a formalization of the glossary [1]. Domain model could be

represented with the use of different notations, among which the most popular are Entity

Relationships Diagrams, and UML class diagrams.

Domain models should be of high quality to reduce the number of changes when

the development proceeds. Among quality factors the most important are [3]:

consistency, completeness, and correctness (3C).

Consistency and completeness could be perceived from 2 perspectives: external,

and internal, from which the external is more difficult to achieve. External completeness

means that we identified in the domain all important entities and relationships, while

external consistency means that we documented the identified elements in the way that

preserves their semantics [4]. On the other side, domain model is internally consistent

when it contains no contradictions, and it is internally complete when it doesn’t contain

any undefined object, and no information is left unstated or to be determined [2].

Definition of model correctness is much vaguer. Some authors define it as a

mixture of consistency and completeness [3, 4], some others [4] – refer it to syntactic

correctness (that meaning of correctness is used further in the paper).

Domain model is typically elaborated by a business analyst during business

modeling or requirement specification phase [2]. Different elicitation techniques serve

to discover the entities in the domain. However, the obtained results strongly depend on

the complexity of the domain, business analyst experience, and the quality of

information sources. More difficult domain, less experience analyst or poor quality

sources, more likely worse quality of the resulted domain model.

On the other side, domain knowledge is often included in existing ontologies, and

could be extracted from them. The extraction process could be (partially) automated,

resulting in a high quality domain model. Consistency and correctness of that model

could be guaranteed by construction, assuming that the source (ontology) itself is

88 From Requirements to Software: Research and Practice

correct and consistent with a domain. The model completeness, at least internal, could

be also checked.

There are many high-level ontologies currently developed, e g. BFO, Cyc, GFO,

SUMO. The last one, SUMO, seems to be very promising because it became the basis

for the development of many specific domain ontologies. A particular useful feature is

that the notions of SUMO have formal definitions (in SUO-KIF language) and at the

same time are mapped to the WordNet lexicon [5]. SUO-KIF is a variant of KIF

(Knowledge Interchange Format) language [6]. Knowledge is described declaratively as

objects, functions, relations, and rules. SUMO and related ontologies form the largest

formal public ontology in existence today [5, 6]. What is more, the ontologies that

extend SUMO are available under GNU General Public License.

The paper presents an initial version of a tool to automatic SUMO to UML

translation. The tool is thought as a support for business analyst collaborating with

business experts. The main functionalities include: browsing ontology content, selection

of interesting elements, and translation of selected elements to UML class diagram. The

presentation covers a meta-model of SUMO notions (the main input to transformation

process), the tool architecture, and an example of domain model that results from the

tool application. The genesis of the tool (related works) is also shortly described as well

as the problems met during implementation, and the elements that will be included in

next release.

The only tool available in the Internet that supports SUMO is SUMO browser,

called Sigma [7]. Tools that allow creating a UML class diagram from existing ontology

exist for other formalisms, e.g. OWL [8], but such a tool is unavailable for SUO-KIF.

However, SUO-KIF could be translated to other formalisms, e.g. DLP [9].

SUMO was selected from existing ontologies because of the following reasons:

 It constitutes the biggest set of ontologies which is freely available; SUMO

contains definitions of more than 21 thousands of terms, and more than 70

thousands of axioms; moreover, the mapping of SUMO notion to WordNet is

also available [6];

 SUO-KIF language is very flexible; it allows to handle relations among three or

more things directly (e.g. OWL does not); it supports statements and rules

written not only in First-Order Logic, but also (at least partially), in the Higher-

Order Logic (e.g. “(believes John (likes Bob Sue))”, when the second argument

of “believes” is a proposition) [6];

 Existing translation of SUMO to OWL is a provisional and necessarily lossy [6],

what put in question its usefulness; on the other hand it is possible to perform the

opposite translation from OWL to SUMO, what seems more promising, because

the result could be extended with the usage of SUO-KIF features;

 The flexibility of SUO-KIF is very similar to SBVR standard [18], promoted by

OMG, defining the meta-model for representation of business vocabulary, and

business rules; SBVR statements could be directly translated either to SUO-KIF

or to UML.

UML was selected as the target language for the translation because it is a general

purpose modeling and specification language, commonly used not only by programmers,

but also by business analysts. Besides Entity Relationship Diagram it is the often

selected notation to describe domain models. Together with OCL it forms a very useful

 Towards automatic Sumo to UML translation 89

tandem to define constraints on the domain behavior in the formal way. UML class

diagram could be easily translated to other representations, either more business

oriented like SBVR (e.g. [18]) or more program oriented like java, c#, SQL (e.g. [20]).

2. Related works

The paper [10] is the first in a series considering SUMO ontology as a source for

domain modeling. It presents an initial set of mapping rules between SUMO notions

and UML notions, and identifies the elements difficult to extract, e.g. attributes in

SUMO are defined for instances, typically within if-then rules, not for classes, as it is in

UML.

The paper [11] presents an outline of a systematic approach to the development of

domain model on the basis of selected SUMO ontologies. The approach involves only a

few steps. It starts with needs description, next goes through identification of business

processes in the area of interests that help to decide if a notion within an ontology is in

the area of interests (and should be translated to UML) or not. After analysis of selected

elements, they are translated (manually) to a UML class diagram. The approach was

checked by example. Some SUMO-UML mappings were also refined. The main

problems the authors claim about are: (a) ontology size – it contains many irrelevant

(out of interesting scope) elements; (b) domain knowledge is spread over many

ontologies (files); (c) some facts are defined at very general level (predicates between

Object, Physical) what makes the interpretation more difficult.

In the paper [12] the refined version of the approach from [11] is presented. The

approach also consists of only few steps, but their definition is much more formal and

close to implementation needs. The main idea of the approach is a guided selection of

SUMO extract, which will be farther translated to UML. The paper also proposes some

new transformation rules, e.g. transformation of unary functions. The general finding of

that work is that the process of knowledge extraction must be supported by a tool.

Otherwise the process, even if the results are promising, is very time consuming, and

error prone.

The contributions of this paper are as follows:

 Meta-model of SUMO notions used within a transformation process (see the

subchapter 3).

 Definition of transformation tool architecture, and a set of static-consistency

rules designed and implemented to check the internal consistency and

completeness of SUMO ontology (see the subchapter 4).

 Verification and correction of transformation rules defined in [10-12]; the subset

of implemented rules (including the changed ones) is presented in the subchapter

5.

3. Meta-model of SUMO notions

To support SUMO to UML transformation process the content of SUO-KIF files has to

be represented at the higher abstraction level, that enables both: to check static

90 From Requirements to Software: Research and Practice

consistency rules, and to perform the transformation process itself. This is achieved

with so called meta-model of SUMO notions – see Fig. 1.

The diagram reflects physical structure of SUO-KIF file which can be perceived as

a set of sentences. A SUMO sentence is represented by Sentence abstract class – a

parent of all possible kinds of statements in SUMO. Each sentence belongs to exactly

one OntologySegment (SUO-KIF file). Below there is a short description of concrete

sentence classes:

a) LogicalSentence – a sentence starting with a logical operator, e.g. (=> …),

(<=> …)

b) QuantifiedSentence – a sentence starting with quantifier: (forall …) or (exists

…)

c) RelationalSentence – a sentence starting with a name of function or relation:

(name ….).

It is assumed that only sentences written at the first level are instantiated by SUMO

to UML translator, e.g. the text: “(=> (instance ?REL BinaryPredicate) (valence ?REL

2))” will be instantiated as one sentence even if it contains 2 internal sub-sentences.

SUMO comments are omitted by the parser.

Figure 1. Meta-model of SUMO notions – main elements.

The right side of the class diagram shows the structure of SUMO notions. Entity is

“the root node of the ontology” [5]. Entity is associated with all sentences which it is a

part of.

Entity is the parent for two UML classes interesting in the context of considered

transformation:

a) Relation – definition of SUMO relation or function, together with its

domain/range (see Fig. 2),

b) Type – represents SUMO notions that can be instantiated, e.g. BinaryPredicate.

Each instance of RelationalSentence is linked to one Relation (basicRelation role),

and many Entities involved (params role).

Some specific relational sentences (defined in SUMO upper ontology) play crucial

role in the transformation process. Up to now six types of such sentences were

identified:

 Towards automatic Sumo to UML translation 91

a) Documentation sentence (DocumentationSent) – a sentence starting with

“(documentation …)”; contains documentation (an instance of SymbolicString)

in a specific language for a specific entity;

b) Instance sentence (InstanceSent) – a sentence starting with “(instance …)”; is

associated with an entity (instance), and a type for that instance;

c) Subclass sentence (SubclassSent) – a sentence starting with “(subclass …)”;

used to describe inheritance hierarchy between SUMO classes; is associated

with parent and child types;

d) Subrelation sentence (SubrelationSent) – a sentence starting with “(subrelation

…)”; allows to describe inheritance hierarchy between SUMO relations; is

associated with parent and child relations;

e) Domain sentence (DomainSent) – a sentence starting either with “(domain …)”

or “(domainSubclass …)”; represents domain element (Type) for a specific

relation;

f) Range sentence (RangeSent) – a sentence starting either with “(range …)” or

“(rangeSubclass …)”; represents a range (Type) for a function (Relation with

isFunction attribute set to true).

In the future, the list will be extended to represent for example partition or part

relations.

Figure 2. Meta-model of SUMO notions – hierarchy of relational sentences.

4. Architecture of SUMO to UML translator

SUMO to UML translator is implemented in java 8 with Swing library. The main

functional elements of the translator are presented on a component diagram in see Fig.

3.

End-user is allowed to select any subset of ontology SUO-KIF files (called

ontology segments) to be loaded by the tool. The loading process is controlled by

92 From Requirements to Software: Research and Practice

SumoLoadConttroller component, and is presented – with the use of a sequence

diagram – in Fig. 4.

Figure 3. Architecture (functional view) of SUMO to UML translator.

SumoLoadController runs SumoParser to: (a) check the syntax correctness of the

file, (b) walk through all tokens in the file and to call SumoModelBuilder to translate

SUMO sentences into internal SUMO model representation. SumoParser was generated

by antlr [13] on the basis of SUO-KIF context-free grammar [14].

Figure 4. Processing of ontology segment.

 Unfortunately, it appeared that SUMO ontology suffers from many bugs, that can’t

be found by the parser (according to the rules formulated in context-free grammar). The

bugs could negatively influence the correctness of the intended transformation process.

Below you have representative examples of them (state on the 12
th

 of April, 2015):

a) lack of domain definition for some relations: e.g. adjacentOrientation

b) overriding of domain definition:

(domain emotionTendency 1 Agent),

(domain emotionTendency 1 EmotionalState)

c) inconsistency between predicate instance and predicate domain:

 (domain 2 rateDetail Formula) instead of (domain rateDetail 2 Formula)

 Towards automatic Sumo to UML translation 93

d) inconsistency between subrelation domain and its parent domain:

(subrelation ingredient material)

(domainSubclass ingredient 2 PreparedFood)

(domain material 2 CorpuscularObject)

e) internal inconsistency between different statements:

(instance visitorParameter BinaryPredicate),

(domain visitorParameter 3 WebSite) – the 3
rd

 domain can’t be specified for

binary predicates

So, there was a strong need to implement SumoChecker component, which main

functionality is to perform different consistency checks. The elements with bugs are

marked and reported by the tool, so the user has an opportunity to correct the input.

Up to now, 3 consistency rules were implemented:

a) Rule for checking domains for predicates and functions – checks if the number

of domain definitions is consistent with the type of predicate/function, e.g. any

instance of BinaryPredicate should have 2 domain definitions;

b) Rule for checking subrelation domains – checks if subrelation domains are

consistent with domains of subrelation parents;

c) Rule for checking consistency between relation arguments and relation

domains – for relation instance like “(instance Aruba LandArea)” the rule

checks if arguments (Aruba, LandArea) are instances of appropriate domains

(Entity, SetOrClass).

All bugs found by RuleChecker for different ontology segments are successively

reported to Mr. Adam Pease, the author of SUMO, and they are gradually corrected by

him and his co-workers.

The process of consistency checking could be switched off in the future, when the

bugs will be fixed, and switched on only on demand, for new ontology segments.

As was mentioned in the previous chapter, domain knowledge is spread over

different SUO-KIF files what is not very convenient for transformation. That is why a

separated component – SumoReasoner – was introduced. Its main responsibility is to

update previously generated SUMO model by inferring information indirectly defined

in SUMO, e.g.: a subrelation could inherit domain definition from its parents; in such

case SumoReasoner copies domain from the parent to all its children.

It is also planned (that feature has not been implemented yet), that SumoReasoner

will communicate with selected theorem prover to reason knowledge from the rules, e.g.

about class attributes.

The new version of sigma tool [7] is prepared to collaborate with E prover [15]. E

prover can deliver answers for specifically marked conjecture formulas. Sigma has

implemented mapping rules between SUO-KIF and TPTP formalism used by E prover.

In consequence, a user can formulate questions like: (instance ?X BinaryPredicate) to

find out all instances of BinaryPredicate.

The transformation process is realized by SumoUMLTranslator component. It

produces – with the use of eclipse.emf and eclipse.uml2 frameworks, an instance of

UML model, and stores it in a file (*.uml), that can be read in a form of a tree or can be

visualized on a diagram with additional tools, like e.g. Papyrus [16].

94 From Requirements to Software: Research and Practice

5. Examples of transformation rules

This subchapter shortly presents the implemented transformation rules focusing on

those that were changed in reference to the previous publications [10-12].

Selected transformation rules are presented in table 1.

Table 1. The subset of SUMO-UML transformation rules

SUMO element UML element Comment

Direct or indirect subclass of

Entity, e.g. Agent, Reservation,

Integer

Class Data values like Integers are also

represented as separate classes

(what results in uniform
representation of relations)

Binary (including self) and

higher arity relations with all
domains defined in the form

“(domain relation class)”, e.g.

“(domain customer 1 Cognitive-
Agent), (domain customer 2

CognitiveAgent)”

Association, e.g. customer,

numberOccupant

Previously, when one of

domains in relation was a data
value, e.g. Integer, the relation

was represented either as an

attribute (for binary relation) or
an association class; now, all of

binary or higher arity relations

are represented in the same way,
as associations

Relation domain defined in the

form “(domainSubclass relation
int class)”, e.g. “(domain-

Subclass roomAmenity 1 Hotel-

Unit), (domainSubclass room-
Amenity 2 Physical)”

Generalization class, e.g.

Physical_Subclasses,
HotelUnit_Subclasses

domainSublcass is a constraint

meaning that the int’th element
of each tuple in relation must be

a subclass of a specific class;

that notion is represented by
UML generalization set

Binary (including self) and
higher arity relations for which

at least one domain is defined in

the form “(domainSublcass
relation int class)”, e.g.

“(domainSublcass roomAmenity

1 HotelUnit), (domainSubclass
roomAmenity 2 Physical)”

Association among the results of
translations of relation domains

including generalization sets,

e.g. roomAmenity (association

between Physical_Subclasses

and HotelUnit_Subclasses)

The previous transformation was
incorrect (misinterpreted seman-

tics); the association used to link

classes; the new association links

generalization sets

Subrelation relationship when
the parent relation has one or

more its domains defined in the

form “(domainSublcass …)”,
e.g. “(subrelation paidRoom-

Amenity roomAmenity)”

Association with “subsetted”
property, e.g. association end of

paidRoomAmenity will be a

subset of association end of
paidAmenity

subrelation is a constraint
meaning that every tuple of a

child relation is also a tuple of a

parent relation; in the UML 2.5
such a feature is represented by a

subset constraint

6. Usage example

To demonstrate the functionality of SUMO to UML translator the example, described in

[12], is reused. It aims in elaborating an initial domain diagram based on Hotel domain

ontology, and ontologies it is based upon (e.g. Merge.kif, Mid-level-ontology.kif,

Dining.kif) [5].

Fig. 5 shows the initial form which allows a user to select interesting ontologies

(ontology segments).

 Towards automatic Sumo to UML translation 95

Figure 5. SUMO to UML translator – the initial form.

After file loading SumoChecker component reports found bugs. Examples of such

bugs are presented below:

reservingEntity lacks of meta-data

powerPlant 1 domain - Device - doesn't fit parent - component - domain

CorpuscularObject

powerPlant 2 domain - Artifact - doesn't fit parent - component - domain

CorpuscularObject

SUMO sentences which are the source of bugs are marked in red in the main

window.

Within the main window a user can search/browse SUMO content. On the left there

is a list of all entities found in selected SUMO ontologies. Because the number of

entities is very big the view could be limited only to entities whose name starts with

specific letter. On the right there is a set of sentences the entity is part of. There is also

Rule tab containing axioms referring selected entity.

Figure 6. SUMO to UML translator – the main window.

96 From Requirements to Software: Research and Practice

By a double click a user can select either entities or sentences to be translated to

UML. Selected elements are marked in yellow – see Fig. 6. If a relation is selected its

domains are automatically selected as well.

Fig. 7. presents the result of transformation done by the tool. For readability

purposes the generated file is opened in Papyrus eclipse plug-in [16]. Examples of

elements that can’t be visualized ({subset} for association ends, properties of

generalization set) are presented in the form of tables (see left-bottom and right-top

corners).

Figure 7. SUMO to UML transformation example (automatic translation).

In comparison to the transformation performed manually (see Fig. 8) more than

70% of interesting elements were generated by the translator. Composition relationship

between HotelBuilding and HotelRoom is absent because in manual transformation it

was concluded from an axiom. Transformation of attributes is not implemented.

During the implementation stage some errors in the proposed transformation ([12])

were discovered, e.g. relations: roomAmenity and its children (paidRoomAmenity,

freeRoomAmenity) have domains that are classes, what was not taken into account in

[12]. Now, these relations are transformed to associations between appropriate power

types. Also, the transformation of relations with one domain being a data value (e.g.

Integers), was changed. Previously, such relations were modeled as attributes or

association classes. Currently, relations are translated in the uniform way, and those

with arity starting from 2 are represented by UML associations.

 Towards automatic Sumo to UML translation 97

Figure 8. SUMO to UML transformation example

(manual translation, previous version of transformation rules).

7. Problems to be addressed

7.1. Meta-classes and meta-relations

SUMO, similarly to UML, is described in SUMO itself. Some elements of SUMO play

a role of meta-classes, i.e. classes the instances of which are functions or relations;

examples include BinaryPredicate, IrreflexiveRelation. Meta-classes are not directly

translated to UML class diagram but they define important properties of other

transformed elements, e.g. the arity of relations/functions. At that moment only arity is

transformed. Another relation property, e.g. “reflexivity” constraint is not translated, but

that could be done with the use of OCL.

Meta-relations are those relations that describe relationships between 2 or more

classes or 2 or more relations; examples include: subclass, partition, disjoint for classes,

and subrelation, disjointRelation for relations. In the current version of the tool only

subclass, and subrelation meta-relations are transformed however the rest could be

rather easily addressed, e.g. with the use of UML constraints for generalization sets, like

{disjoint}, {complete}.

7.2. Class-creating functions

SUO_KIF has several functions that return a new class. For example UnionFn returns

an anonymous class being a union of two classes, e.g. “(domain CardinalityFn 1

(UnionFn SetOrClass Collection))”, or ExtensionFn “which maps an attribute into the

class whose condition for membership is the attribute”, e.g. “(cardinality (ExtensionFn

DevelopedCountry) 35)” [5].

98 From Requirements to Software: Research and Practice

The SUMO sentences containing such functions are not transformed at that

moment.

7.3. Class properties

In SUMO a property holds between an instance of entity and an instance of attribute. In

UML properties are defined directly at class level and are shared (in structural sense)

among all class instances. The SUMO class to which a given attribute is assigned to can

be inferred. however the support of external tool like a theorem prover is needed. The

integration with E prover is planned in the nearest tool release.

Additional problem is that instances of SUMO attributes could form a multi-level

hierarchy, defined with subAttribute relation.

7.4. Axioms

SUMO axioms introduce constraints on ontology instances. The example below stays

that every instance of HotelBuilding must have an instance of HotelRoom related as a

proper part (asymmetric relation).

 “(=>

 (instance ?HOTEL HotelBuilding)

 (exists (?ROOM)

 (and

 (instance ?ROOM HotelRoom)

 (properPart ?ROOM ?HOTEL)

)

)

)”

Some of such axioms could be expressed directly in UML (e.g. the constraint above

can be presented by composition relationship), some other could be translated into

OCL. The current version of the tool allows reading the axioms but they can’t be

selected for transformation.

8. Summary

The paper presents implemented features of the tool that supports SUMO to UML

translation. The proof of concept shows that such transformation is feasible however is

not trivial. Implementation problems result from different approaches to knowledge

representation used in both formalisms. UML class diagram focuses on entities

represented by classes and relationships between them. SUMO is much more flexible,

enabling definition of axioms or relationships also between objects e.g. subAttribute.

Transformation rules implemented within the tool were identified and described in

[10-12]. They were revised, some mistakes were found and corrected (however not all

are included in the current tool release).

 Towards automatic Sumo to UML translation 99

Static consistency rules allowed discovering many inconsistencies in existing

ontologies, what resulted in increasing of their quality (most of found mistakes were

corrected by SUMO developers).

The results of the tool applications are promising. The obtained domain class

diagram is consistent, correct and complete to the level to which the input ontology has

these features. These are the main benefits the tool can bring to potential users. Business

expert or business analyst can use the tool to find out interesting notions, select them,

and translate to a UML class diagram with a set of OCL constraints with one click. The

user is warned about incompleteness, and inconsistencies found in the original files. He

or she can experiment with transformation results, selecting new elements or un-

selecting previously selected. The obtained UML model can be re-factored, and next

transformed to other representations, e.g. programming languages.

The next release of the tool will address problems presented in subchapter 6. The

usability of the final version of the tool is planned to be checked by business analysts.

References

[1] K. Bittner, I. Spenc, Use Case Modeling, Addison-Wesley Professional, 2003.

[2] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software development process, Addison Wesley

Professional, 1999.
[3] D. Zowgi, V. Gervasi, The Three C’s of Requirements: Consistency, Completeness, and Correctness,

Foundations for Software Quality, Essen, Germany, Essener Informatik Beitiage (2002), 155-164.

[4] P. Mohagheghi, V. Dehlen, T. Neple, Definitions and approaches to Model Quality in Model-Based
Software Development, A Review of Literature, Information and Software Technology (2009), 1646-

1669.
[5] Suggested Upper Merged Ontology, http://www.ontologyportal.org (last access: 27 June 2015)

[6] A. Pease, Ontology: A practical Guide. Articulate Software Press, Angwin, 2011.

[7] http://sourceforge.net/projects/sigmakee/files/ (last access: 27 June 2015)

[8] http://protegewiki.stanford.edu/wiki/OWL2UML (last access: 27 June 2015)

[9] F. M. Suchanek, Ontological Reasoning for Natural Language Understanding, Master’s Thesis in

Computer Science, Saarland University, Germany, 2005 (available at
http://suchanek.name/work/publications/master.pdf, last access 27 June 2015)

[10] B. Hnatkowska, Z. Huzar, I. Dubielewicz, L. Tuzinkiewicz, Problems of SUMO-like ontology usage in

domain modelling, Intelligent Information and Database Systems, eds. N. Nguyen, B. Trawiński, K.
Somboonviwat, Lecture Notes in Computer Science (2014), 352-363.

[11] I. Dubielewicz, B. Hnatkowska, Z. Huzar, L. Tuzinkiewicz, Domain Modelling in the Context of

Ontology, Foundations of Computing and Decision Sciences (2015), 3-15.
[12] B. Hnatkowska, Z. Huzar, I. Dubielewicz, L. Tuzinkiewicz, Development of domain model based on

SUMO ontology, accepted for publication, DEPCOS conference, 2015.

[13] http://www.antlr.org/download.html (last access 27 June 2015)
[14] A. Pease, Standard Upper Ontology Knowledge Interchange Format, 2009,

http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/sigma/suo-kif.pdf (last access 27 June 2015)

[15] S. Schultz. System Description: E 1.8. Proceedings of the 19th LPAR, LNCS 8312 (2013), 477-483
[16] https://www.eclipse.org/papyrus/

[17] OMG, Unified Modeling Language, Version 2.5, September 2013

[18] OMG, Semantics of Business Vocabulary and Business Rules (SBVR), Version 1.2, November 2013
[19] J. Cabot, R. Pau, R. Raventós, From UML/OCL to SBVR specifications: A challenging transformation,

Information Systems, Volume 35, Issue 4 (2010), 417-440.

[20] A. Marinos, S. Moschoyiannis, P. Krause, An SBVR to SQL Compiler, Proceedings of the RuleML-
2010 Challenge (2010), http://ceur-ws.org/Vol-649/paper7.pdf (last access 27 June 2015)

Chapter 7

PIM-PSM Pattern-Aware

Transformations

1. Introduction

The OMG’s MDA is an approach supporting software development process by

models and model transformations, which in principle is based on concept of separation

of specification from implementation [6]. The MDA only sketches definition of models,

model transformations and development process. Models in the MDA are defined at

various levels of abstraction, in particular: PIM corresponds to level of system analysis

and is related to system analysis model; PSM corresponds to various levels of details

taking into consideration implementation platform, i.e. from architectural/design level to

implementation level. Transformations in the MDA, in particular, are responsible for

converting a PIM model to PSM level models, ideally in automatic manner.

In this paper we are detailing PIM, PSM and model transformations, and addressing

one of major challenge of the MDA, i.e. automation of the path from models to execut-

able systems [6]. Not all models are capable to be used for automation, the models have

to be welldefined, i.e. requirements need to be sufficiently detailed and precisely de-

fined [6]. Thereby, we introduce modelling standard of well-defined PIM models de-

fined by set of allowed model elements and rules/constraints on elements creation and

association. We narrow the standard to domain of information system. In order to make

the standard applicable to commerce projects, it is derived from industry-based analysis

modelling method [5]. System analytic is responsible for PIM creation.

Similarly, PSM have to be well-defined, nevertheless PSM represents design at var-

ious level of details. PSM at architectural/design level, is expressed by model elements

representing architectural and/or design notions. However, PSM at implementation level

is mapped directly to implementation of a system, it has to be expressed only using

implementation platform notions. We narrow target implementation platform to Java

platform. Hence, implementation level PSM consists of packages, classes, interfaces,

operations, etc. mapped to respective Java language notions.

We propose transformation approach, which generates automatically implementa-

tion of a system, i.e. taking into consideration structural and behavioural aspects, in

context of requirements defined in PIM, within a given architecture. In order to deal

with complexity of PIM-PSM mappings, a particular transformation is a sequence of

parametrized constituent transformations, i.e. transformation chain, in which a PIM is

modified in successive steps until final PSM is reached. Each constituent transformation

is responsible for applying architectural or design decision, in particular it is application

102 From Requirements to Software: Research and Practice

of an architectural or design pattern. A transformation chain is created by an archi-

tect/designer, who selects and configures architectural and/or design patterns in order to

shape a system architecture meeting functional and non-functional requirements. There-

by, various system designs might be expressed using transformation chains.

The chapter is organized as follows. We are describing PIM and PSM modelling

standards in Section 2 and Section 3 respectively. Section 4 is dedicated to transfor-

mation approach and Section 5 introduces constituent transformations. An example

transformation chain is discussed in Section 6. Finally, conclusions on the chapter are

provided in section 7.

Figure 1. Analysis Models - Information Model example

2. Analysis Model - PIM

Analysis Model is specification of a system that abstracts from implementation de-

tails. In the context of the MDA approach, Analysis Model corresponds to PIM. In pre-

sented approach the model consists of:

 Information Model defines structure of information processed within

the system, which is expressed by UML class diagram [11] (example is shown

in Figure 1), together with lifecycles’ specifications defined in form of State-

Machines;

 Use-case Model defines UseCases and Actors, i.e. functionalities of

the system and users who use those functionalities. A functionality is specified

by: (a) use-case scenario, i.e. interactions between Actors and the system, mod-

elled by an Activity, and (b) user interface model, i.e. graphical user interface

and navigation paths between elements of user interface.

Use-case scenario is specified by means of Activities – each UseCase has an Activi-

ty as the classifierBehavior property defining its flow. The following section explains

proposed extensions of an Activity’s model elements that are used in the use-case sce-

nario’s specification to enable the PIM to PSM transformation. Activity diagram show-

ing an example of use of described constructions is shown in Figure 2. Relations be-

tween Activities and other elements of Analysis Model are provided in [5].

 Adapting Scrum Method to Academic Education ... 103

An Activity is divided into ActivityPartitions, which represent participants of the

behavior and group Actions for which they are responsible. Partitions used in the pre-

sented approach represents: actor’s actions, behavior of a system presentation layer,

behavior of a system logic layer.

An Actor is responsible for data input action, data modification, selection of data to

further processing, option selection or decision confirmation. A presentation layer is

responsible for actions, like data presentation, allowing data edition and option selecting

etc. Business logic is specified in a logic layer, by means of read or write persistent data

actions, data transformation or verification, calls to external system services etc.

Use-case scenario defined by an Activity starts from event received by an AcceptE-

ventAction that represents a UseCase’s trigger. The AcceptEventAction is marked by

user-defined «UseCaseTrigger» stereotype.

Model elements of an Activity allow to specify all a UseCase’s flows (i.e. main, al-

ternate and exception) within an Activity. The DecisionNode separates particular flows,

which may be steered by:

 Results of system processing, i.e values generated by previously exe-

cuted Actions are used in evaluation of conditions of edges outgoing from the

DecisionNode;

 User interface’s events triggered by a user (like pressing a button) ex-

pressed by a DecisionNode with outgoing edges for each event definition. To

make explicit connection between flows and user interface’s elements, stereo-

type «EventDriven», pointing to pressed button (defined by event tagged value),

is attached to each outgoing edge;

 An actor’s decision on Actions to be taken, which is expressed by a

DecisionNode with outgoing edges without any conditions.

Objects flows within an Activity are expressed by notion of Pins (InputPin, Output-

Pin and ValuePin), whose type must be a kind of Class from Information Model [11].

For the sake of readability and to enable the PIM to PSM transformation, following

notation conventions and extensions are used:

 All explicit objects processed with an Action are available via Input-

Pins and all needed objects related to those explicit are obtained by dot-notation

within Classes of Information Model;

 All results of an Action processing are stored in OutputPins of the Ac-

tion;

 To simplify frequent access to particular objects (in particular in case

of multiple “temporary” data modification), a DataStore with «UseCaseLocal-

Variable» stereotype defined in presented approach is used;

 For an Action in the presentation layer, only InputPins are defined,

which correspond to values to be displayed by elements of graphical user inter-

face;

 For an Action in the actor layer, only OutputPins are defined, which

correspond to values provided or selected by an Actor;

 For an Action accessing persistent objects, InputPins correspond to

parameters of persistent objects selection criteria, while OutputPins contains se-

lected persistent objects;

104 From Requirements to Software: Research and Practice

 For an Action storing persistent objects, InputPins contain objects to

be persisted. OutputPins are defined conditionally, when persistent objects are

modified within the Action, and contain input and modified objects;

 For an Action, which transforms or computes values and/or objects,

InputPins contains computation input parameters, while results are stored in

OutputPins of the Action.

Figure 2. Analysis Models - Use-Case scenario example

Actions defined within the presentation layer might be refined by following stereo-

types:

– «Presentation» – an Action is realized by a user interface’s element specified

by elementUI tagged value;

– «PresentationMessage» – an Action, which displays various types of messag-

es, like information, warning, error messages to a user. Message content is provided

in message tagged value, while dialogType tagged value points to message dialog;

– «ValidateMessage» – an Action is responsible for presentation of validation

messages within user interface.

 Adapting Scrum Method to Academic Education ... 105

In order to make processing logic detailed, precise and unambiguous, Actions de-

fined within the logic layer are complemented by rules and constraints on data pro-

cessing. Thereby Actions are specified by Object Constraint Language (OCL) [10]

statements, where an Action’s InputPins and OutputPins correspond to input and output

parameters respectively.

For the sake of specification readability and precision, following notation conven-

tions and extensions as well as interpretation are assumed:

 operation allInstances() – returns all persistent objects of a given

Class;

 operation oclIsNew() – verifies whether the object is new (created in

the Action, not persisted yet), whether properties of the object have default val-

ues, and the object is in an initial State with respect to a corresponding State-

Machine;

 expression: out=in – states that the out object is the in object, which

properties might be modified in remaining part of a OCL statement.

Following stereotypes are available for all Actions presented in logic layer:

 «Select» – an Action selects persistent objects. A criterion of selection

is given in criterion tagged value, which might be parameterized by values of

InputPins. Example statements for «Select» Actions from the Activity on Figure

2 are given below:

 ‘Read product categories’: criterion =

out=Category.allInstances()->select(active),

 ‘Read products catalog’: criterion =

out=Product.allInstances()->select(standard),

 ‘Select a process salesman for the RQF’: criterion =

out=SalesRegion.allInstances()->select(active and postcodes-

>includes(in.postcode))->flatten()->any(true)

 «Set» – an Action sets properties values of a processed object. The

values are defined using OCL statements. Example statements for «Set» Actions

from the Activity on Figure 2 are given below:

 ‘Set the assistant of the RFQ’: expression= out=in and

out.assistant=spe

 ‘For each RQFDetails set a production process’: expression

=

out=in and out.RFQDetails->forAll(sp |

let ap:Set(productionProcess)=

sp.products.specifications->select(active) in

if ap->size()=1

then sp.productionProcess=ap->any(true)

else (sp.productionProcess.oclIsUndefined() and

out.requiredConsultation)

endif) and (not out.customProduct.oclIsUndefined()

implies out.requiredConsultation)

 «Save» – an Action persists an object. It is assumed that properties of

the stored object are computed in predecessor Actions on the logic layer and

106 From Requirements to Software: Research and Practice

Actions on the actor layer related to providing data via user interface, but also

they results from constraints on Information Model, like {id};

 «Delete» – an Action deletes a persistent object. It also remove recur-

sively all constituent objects, i.e. related by means of composite association;

 «Validate» – an Action validates data provided by an Actor using user

interface’s elements according to validation rules;

 «Email» – an Action sends e-mail message. A message of an e-mail is

defined in text tagged value, and the email recipient in email tagged value.

3. Implementation Model – PSM

Implementation Model defines a system only in terms of implementation languages,

platforms, libraries, API etc., and it is detailed enough to generate directly complete

implementation of the system. In the context of MDA approach, Implementation Model

corresponds to PSM at the very end of transformation process, i.e. which contains all

implementation details required to generate complete source codes of a system.

In the chapter, Implementation Model defines a system in terms of Java platform,

and related libraries, frameworks, etc.. Thereby, it determines set of model elements that

might be used in the model:

 structural elements – which are expressed by elements of a class dia-

gram: Packages, Classes, Interfaces, etc., and corresponds to Java packages,

classes, interfaces etc.;

 behavioural elements – which are Interactions, and are expressed by

elements of a sequence diagram: Messages, Lifelines, CombinedFragments, etc.,

and corresponds to Java implementation of operations;

Implementation Model consists of Packages, which contain Classes and Interfaces.

Each Class or Interface can imports either Classes, Interfaces, or whole Packages (in

fact all elements in Packages), which in Java means to import either particular

class/interface, or import content of given package [11].

Following rules should be taken into account by structural elements of Implementa-

tion Model:

 Every Class or Interface contains Properties, with names and types,

and Operations, with names and parameters, which are Java attributes and oper-

ations respectively, please refer to Figure 3.

 Each Operation has always one return parameter, and can has zero or

more input parameters.

 Types of Properties and Operations’ parameters are either a primitive

type or a reference to any accessible Class or Interface representing Java classi-

fiers.

 Additionally, each Java attribute or parameter can define collection of

values, i.e. table, which is ordered and not unique, what in terms of a modelled

attribute/parameter definition means: isOrdered=true, isUnique=false,

lowerValue=0,upperValue=*.

 Adapting Scrum Method to Academic Education ... 107

 Each Property or Operation has additional modifiers: visibility,

whether a feature isStatic, etc. which are mapped to equivalents in Java lan-

guage.

 Interfaces can have only Properties that are static and has public visi-

bility.

When a system is defined in Implementation Model, it has to refer to existing Java

Software Development Kit, Java API, frameworks, libraries etc. Thereby, it is possible

to import to Implementation model external models containing Packages, Classes and

Interfaces, which corresponds to required APIs, libraries, frameworks, etc.. Obviously,

not full models are incorporated, only elements that are accessible, without any opera-

tions implementation.

Figure 3. Implementation Model example

All Operation of Classes defined in Implementation Model have to point to behav-

ior, which corresponds to method definition in Java. The behavior is defined by an In-

teraction using sequence diagram, with respect to convention presented below [11].

 The Interaction consists of a self LifeLine which represents an object,

or a Class in case of a static Operation. The self LifeLine defines a sequence of

Messages, which corresponds to a sequence of statements in Java method. Only

interactions between the self LifeLine and other LifeLines are shown, no other

Message exchanges are added in the Interaction, please refer to Figure 3.

 Local variables of Java methods are defined as Properties of the In-

teraction, i.e. they are created before the Interaction’s execution, are destroyed

after. The Properties have to be initialized before they are read.

 First received Message on the self LifeLine is a Message from envi-

ronment corresponding to the Operation call, in form of a found synchronized

Message (messageKind=found, messageSort=synchCall), optionally with ar-

guments actually being call parameters.

 Assigning value to a Property, which corresponds to Java assignment

statement, is defined by convention, i.e. a recursive, asynchronous Message

_set(var,l-value)

(please refer to _set Message on Figure 3) where:

108 From Requirements to Software: Research and Practice

 var – the Property name, which can be either the Property of the Op-

eration’s Class, or Property of the Interaction, which corresponds to Java

local variable,

 l-value – OCL statement, limited to simple statements referring only

to Properties, which evaluates to value of var’s type.

 Calls of other Operations are modelled by sending a call Message

(messageSort=synchCall), which points to the called Operation and arguments

representing the called operation’s actual parameters. The Message is sent to a

LifeLine which represents a called object, which is specified either by the Inter-

action’s Property or the Operation’s Class. Please refer to example calls on

Figure 3.

 A new object is created using a create Message (messag-

eSort=createMessage), which arguments are actual parameters of the new ob-

ject’s constructor Operation.

 Control instructions like if, while are modelled using CombinedFrag-

ments, i.e. alt, loop. A condition of combined statement are defined using OCL

statements.

 The Interaction finishes by sending Message to environment, in form

of a lost return Message (messageKind=found, messageSort=reply) with argu-

ments containing return value.

Figure 4. Transformation Composition specification

4. Transformation approach

Main goal of the transformation approach is to support transformations of PIM to

PSM at implementation level, from which base code of a system is generated. Thereby,

the transformation approach should be able to perform mapping of both structural and

behavioural aspects of a system, in order to fully implement all requirements stated in a

PIM. Considered transformations would be rather complex, hence an ability to deal with

compound cases should be also addressed by the approach. Moreover, we want to

reuse once written transformations in other projects, i.e. the approach should support

reusability. Finally, the approach should represent design decisions in explicit way, to

support architects/designer in system designing activities.

We address above requirements by transformation chains and constituent transfor-

mations. A transformation chain is a sequence of transformations steps, executed in a

 Adapting Scrum Method to Academic Education ... 109

given order, please refer to T1;T2;…;Tn-1;Tn on Figure 4. Model-to-model [8] and model-

to-text [9] mappings are allowed [3]. Each transformation step calls a constituent trans-

formation with configured parameters values.

A model-to-model constituent transformation is responsible for applying architec-

tural or design decision. A model-to-text constituent transformation is responsible for

source code generation. In assumptions, a constituent transformation should be reusable,

i.e. it should be possible to include it as a part of other transformation chain. In most

cases, the constituent transformation encodes knowledge present in architectural or

design patterns, libraries etc., hence it is an application of pattern, or application of

platform library or framework usage, or mapping of analysis object-oriented constructs

to design/implementation object-oriented level. Each constituent transformation has

formal parameters, steering transformation execution, e.g. parametrizing application of

a design pattern.

A software designer is responsible for selecting constituent transformations, order-

ing them properly, and setting suitable configurations to generate an architecture, which

fulfils functional and non-functional requirements. In particular, the designer has to

select all necessary transformations that will transform PIM to a valid PSM at imple-

mentation level, i.e. model fulfilling constraints defined in Section 3.

Let’s discuss an example presented on Figure 4. When a transformation chain is run,

a model (a PIM at the beginning of the run, please refer to Model PIM on Figure 4) is

gradually processed in each transformation step. The step passes the model and parame-

ters values to a constituent transformation (please refer to T1;T2…;Tn-1 on Figure 4) and

executes it creating updated version of the model (please refer to M1;M2;…;Mn), what

corresponds to application of a design decision. The process is repeated to end of the

chain, which should result in generation of a PSM at implementation level (please refer

to Model PSM on Figure 4). Finally, a model-to-text transformation generates a source

code from the PSM (please refer to Tn, Java Code, and Model PSM on Figure 4).

Summing up, the proposed approach supports compound transformations by trans-

formation chains. It provides reusability by model-to-model and model-to-text constitu-

ent transformations, which may be used within different transformation chains configu-

ration. It represents explicitly design decisions by transformation chains, constituent

transformations and their configuration. Mapping of structural and behavioral aspects is

covered by transformation chains, which are discussed in Section 5.

5. Constituent Transformations

We distinguish following types of model-to-model constituent transformations.

Constituent transformations applying architectural or design patterns to a model. We are

considering Layer and Domain Objects architectural patterns [12], and Explicit Inter-

face [12], Data Access Object [1] design patterns. Another constituent transformation

type applies usage of target platform libraries and frameworks. In this chapter we are

introducing only Hibernate ORM transformation. In the separate category are mappings

110 From Requirements to Software: Research and Practice

of analytic object-oriented constructions to implementation level, represented in this

chapter by Analysis Information Model transformation.

Additionally, there are auxiliary transformations, i.e., Split Activity, Connected Ac-

tivities, Generate Operation and Activity to Interaction. They represent common opera-

tions on model elements, often used by constituent transformations.

Because of space limits, we omit details on model-to-text constituents. Neverthe-

less, application code is created using “Model to Text Transformation Language” [9], a

template-based textual approach, which generates files filling template meta-variables

[3].

 Split Activity 5.1.

The transformation splits an Activity into set of Activities. It moves nodes from the

activity to corresponding output Activities, taking into consideration splitting criteria,

i.e splittingCriteria. The transformation preservers structure and dynamics of control

and object flows of the activity.

Parameter Description

activity:Activity an Activity to be splitted

splittingCriteria:Set(Tuple{

activityName:String, activi-

tyNodes:

Set(ActivityNode)}

)

splitting criteria of activity in form of

set of pairs where: activityName - name of

a result Activity; activityNodes – set of

ActivityNodes, defined within activity,

which will be moved to the result Activity

Results For each item of splittingCriteria set, a new Activity is created with name

activityName and all activityNodes are moved to the Activity. For example, Figure 5 is

illustration of an Activity division, in which horizontal dashed line sets splitting criteria.

Figure 5 shows that new Activities A2 and A3 are created, and ActivityNodes A, B are

moved to the Activity A2, but node C is moved to the Activity A3.

5.1.1. Figure 5. An example application of Split Activity

ActivityEdges of the activity, which source and target ActivityNodes are moved to

same result Activity, are also moved to the result Activity. In Figure 5, ActivityEdges a

and b are moved to an Activity A2, and ActivityEdge d is moved to an Activity A3.

However, ActivityEdges of the activity, which source and target ActivityNodes are

 Adapting Scrum Method to Academic Education ... 111

moved to different result Activities, are splitted, for instance an ActivityEdge c is split-

ted between Activities A2 and A3, please refer to 5. In such case for each splitted Activi-

tyEdge: A Signal is created and labelled by unique id, and pairs of SendSignalAction

and AcceptEventAction are added to resulting Activities.

Because of space limits we will not analyze all cases of an Activity division. How-

ever, a case discussed above clarifies a general idea of the Split Activity transformation.

 Connected Activities 5.2.

The transformation splits activity into set of connected Activities.

Parameter Description

activity:Activity an Activity to be splitted into connected Activi-

ties

Results An Activity is connected when for any two ActivityNodes within the Activi-

ty a path joining those nodes exists. The transformation finds biggest connected sub-

activities within partitioned Activity and moves them to separate Activities. Since an

Activity is a graph, the transformation finds connected components of the activity and

moves them to separate Activities. The transformation splits the activity using a graph-

search based algorithm.

 Generate Operation 5.3.

Transformation converts activity, that are results of Split Activity or Domain Ob-

jects transformations (please refer to Section 5.1 and Section 5.6 respectively), to rou-

tine-like behavior that conforms paradigms of structured programming: sequence of

instructions, conditional statements, iterations, calls to other sub-routines, no jump in-

struction etc. Next, the transformation creates an Operation representing the activity and

adds it to a Class, owner of the activity. Finally, all other Activities using the activity are

modified, in order to call the Operation rather than the activity itself.

Parameter Description

activity:Activity modified Activity

Results The transformation can be run if the activity is defined in context of a

Class, and when the activity is connected, please refer to Connected Activities transfor-

mation in Section 5.2.

The transformation creates an Operation in the context Class to represents the ac-

tivity. Next, it modifies the activity, adds Parameters to the Operation, and updates

parts of models from which the activity is invoked. Because of space limits, we discuss

only basic scenario, however it explains idea of the transformation.

An AcceptEventAction and a SendSignalAction of the activity are replaced by Ini-

tialNode and FlowFinalNode respectively, please refer to the Activity A1 and the Activi-

ty A2 on Figure 6. Next, an Operation is created and attached to the Class, please refer

to an Operation opA2() that is created within the Class C on Figure 6.

112 From Requirements to Software: Research and Practice

On the other side, an SendSignalAction to the activity is changed to a CallOpera-

tionAction, please refer to Figure 6. The Action A in the Activity B1 is changed to the

CallOperationAction opA2 in the Activity B2. Next, an AcceptEventAction is removed

and all outgoing edges are pinned to the CallOperationAction. Please refer to the Action

D in the Activity B1 which is removed from the Activity B2, on the Figure 6.

 Activity to Interaction 5.4.

The transforms builds from an Activity an Interaction, with respect to constraint and

rules defined in Section 3

Parameter Description

activity:Activity modified Activity

Results The transformation traverse each node of the activity, starting from nodes

having no predecessors (in most cases initial nodes), and generates elements of the

Interaction, with respect to following rules:

 InitialNodes are replaced by found Messages with arguments corre-

sponding to input parameters of the activity,

– «Set» Actions are replaced by Messages corresponding to assignment state-

ments,

– any other stereotyped Actions like «Select», «Save», «Validate», etc. are

mapped to Messages, which call Implementation Platform API, libraries, etc. For

instance, «Select »action might be mapped to calls to Hibernate [4] library, in par-

ticular to HibernateTemplate class,

 DecisionNodes are mapped to alt or loop CombinedFragments,

 FlowFinalNodes, or Actions without successors are replaced by lost

Messages with proper return value, if any.

 Layers 5.5.

The transformation is an application of Layers pattern [12]. The transformation di-

vides into layers selected behaviour, i.e. Activities. The Activities as well as related

structural elements (Classes, Interfaces, etc.) are divided, however structural division

corresponds to behaviour partitioning. According to the definition of Layers pattern [12],

a layer can communicate only with other layers that are lower in hierarchy.

Parameter Description

activities:Set(Activity) Activities to be splitted

layers:OrderedSet(Tu-

ple{

layer: String, activi-

tyNodes :

Set(ActivityNode)})

criteria of partitioning the activities into layers,

given as an ordered set of pairs where: layer – name

of a layer; activityNodes - set of nodes, defined with-

in one of activities, which will be moved to the result

Activity of the layer

 Adapting Scrum Method to Academic Education ... 113

Results The transformation applies Layers design pattern [12], by creating packag-

es Package for each layer. The activities are splitted against layers criteria using Split

Activity transformation, please refer to 5.1. Resulting Activities are moved to corre-

sponding Packages. Moreover, all structural elements (like Classes, Interfaces), used by

any Activity in a given layer, are moved to it. If a given structural element is used by

many layers, it is moved to lowest layer in a hierarchy, and proper ElementImports are

added to all layers using the element.

 Domain Objects 5.6.

Transformation is an application of Domain Object pattern [12]. The transformation

extracts from selected behaviour, given in form of Activities, independent and coherent

functionalities and place them in domain objects. The objects are created with respect to

a given division criteria.

Parameter Description

activities:Set(Activity) Activities to be splitted

domainObjects:Set(Tu-

ple{

domainObject: String,

activityNodes :

Set(ActivityNode)})

criteria of partitioning the activities into domain

object as a set of pairs where: domainObject – name

of a domain object; activityNodes - set of nodes,

defined within one of activities, which will be moved

to the result Activity of the domain object

Results For each item in domainObjects a Class is created. Next, the activities are

splitted against domainObjects criteria using SplitActivity transformation. Resulting

Activities are placed in corresponding Classes.

 Explicit Interface 5.7.

The transformation applies Explicit Interface pattern [12], by creating an Interface

for a set of Operations (owned by one Class) and modifies all callers to call the Opera-

tions via the Interface.

Parameter Description

interfaceName:String name of a resulting Interface

opera-

tions:Set(Operation)

Operations that will be present in the resulting Inter-

face

Results The transformation creates an Interface that contains all Operations from

the operations. All CallOperationAction in all Activities, are modified in order to call

the operations via the Interface. Finally, an InterfaceRealize between the Class and the

Interface is added.

114 From Requirements to Software: Research and Practice

 Data Access Object 5.8.

The transformation applies Data Access Object pattern [1]. It creates DAO Classes

for selected Classes of persistent objects. New Operations responsible for the objects

management are created and added to the DAO Classes. Behaviors of the Operations

are taken from selected Activities.

Parameter Description

persisten-

tObjects:Set(Class)

Classes for which DAO Classes will be created

activities:Set(Activity) Activities to be splitted among DAO Classes

Results Pattern application starts from splitting the activities into domain objects

(please refer to Section 5.6) in order to group Actions of activities with respect to ma-

nipulated persistent objects Classes. Value of Domain Object’s activities parameter is

activities. Value of Domain Object’s domainObjects are definition of objects for each

persistent object in persistentObjects. It is expressed as follows (using simplified ver-

sion of division algorithm, taking into consideration return type of an Action):

persistentObjects->collect(cl:Classifier| Tuple{ domainObject =

cl.name+’DAO’,

activityNodes = actions-> select(a:Action | a.output-> at(1).oclIsTypeOf(cl)))}.

In next step, each domain object’s Activity is divided into connected Activities by

Connected Activities transformation (please refer to Section 5.2). Finally, for each gen-

erated Activity, an Operation is created by Generate Operation transformation (please

refer to Section 5.3)

 Hibernate ORM 5.9.

The transformation is responsible for applying usage of Java Hibernate ORM li-

brary [4]. It imports elements of Hibernate APIs, Classes, Interfaces, etc. to a PSM

model. It enhances Classes of persistent objects with model elements required by Hi-

bernate. Last but not least, it transforms selected Activities to Interactions, adding re-

quired calls to the Hibernate API, using Activity to Interaction transformation defined in

Section 5.4.

Parameter Description

persisten-

tObjects:Set(Class)

Classes of persistent objects to be managed by Hi-

bernate ORM

activity:Set(Activity) Activities to be mapped. They should contain Ac-

tions

that manipulate persistentObjects

 Adapting Scrum Method to Academic Education ... 115

 Analysis Information Model 5.10.

In fact it is a group of transformations, which removes from Information Model (or

any selected part of a model), analytical constructions, which are not present in Imple-

mentation Model, e.g. n-ary association, association classes, multiple inheritance. Addi-

tionally, the transformations map data types from Informational Model to types availa-

ble in Implementation Model. Another side-effect of the transformations are changes in

all Activities, which Actions are using transformed elements of Information Model, i.e.

they have to be modified to be consistent with changes in the Information Model.

Parameter Description

elements:

Set(PackagableElement

)

elements of Information Model to be transformed

6. Case Study – Transformation Configuration and Execution

We are discussing a system supporting sales in manufacturing company. Its PIM is

introduced in Section 2, (please refer to Figure 2, and Figure 1).

It is assumed that designer creates configuration of 3-tiers architecture [1]: presen-

tation tier, business tier, and integration tier, and the system is implemented in Java,

using Hibernate ORM library. Because of space limits, we discuss only a transfor-

mations for the integration tier. For the sake of simplicity we introduced herein OCL

functions: actionsWithStereotypes, which returns all elements with given stereotypes

and actionsOn-Partition, which returns all actions on a given partition. A transformation

chain, and its steps configuration are following.

At the beginning, all analytic constructions of the PIM are converted to objecto-

riented notion available in Java.

Analysis Information Model - Section 5.10

elements = Package.allInstances()->

select(p:Package|p.name = ’InformationModel’)->any(true). packagedElement

In this step, a 3-tiers architecture is applied, by splitting the system into layers. All

Activities of UseCases of the PIM are processed. Resulting layers are: Presentation,

which contains Actions moved from the PIM’s Presentation layer; Business, and Inte-

gration, which contain Actions moved from the PIM’s Logic layer responsible for data

processing and persistence respectively.

Layers - Section 5.5

elements = UseCase.allInstances()->

collect(uc|uc.classifierBehavior.oclAsType(Activity))->asSet()

layers = OrderedSet{

Tuple{layer = ‘Presentation’,

activityNodes = actionsOnPartition(’Presentation layer’)->

116 From Requirements to Software: Research and Practice

union(actionsWithStereotypes(Set{‘Validate’}))},

Tuple{layer = ‘Business’, activityNodes = actionsOnPartition(‘Logic layer’) – ac-

tionsWithStereotypes(

Set{‘Select’,’Save’,’Delete’})},

Tuple{layer = ‘Integration’, activityNodes =

actionsWithStereotypes(Set{‘Select’,’Save’,’Delete’})} }

In current step, DAO Classes are created. It splits an Activity related with the Inte-

gration layer into DAO Classes, taking into consideration all Classes of persistent ob-

jects created by previous transformations steps.

Data Access Object - Section 5.8

activities = Package.allInstances()->

select(p|p.name = ’Integration’).any(true).packagedElement->

select(el:PackageableElement|el.oclIsTypeOf(Activity) and el.name = ’Integra-

tion’)

persistentObjects = informationalModel

Next, Hibernate ORM is applied to the system. Obviously, all Classes of persistent

objects modified in previous transformations steps are passed to the persistentObjects

parameter. Moreover, all Operations of the DAO Classes are translated from Activity to

Interaction and calls to Hibernate ORM API are added.

Hibernate ORM - Section 5.9

activities = Package.allInstances()->

select(p|p.name = ’Integration’).any(true).packagedElement->

select(cl:PackageableElement|cl.oclIsTypeOf(Class) and

cl.name.indexOf(’DAO’) > 0)->collect(cl:Class|cl.ownedOperations.method)->

flatten()->asSet()

persistentObjects = informationalModel

Finally, an application code is generated using already discussed model-to-text

mappings.

7. Conclusions

The PIM is transformed to PSM, by sequence of constituent transformations, during

which PIM is gradually modified to become a model of the system at implementation

level. PIM is Analysis Model, which is an adaptation of the approach presented in [5],

joining commercial experiences in system analysis, precision and unambiguousness.

PSM is expressed by concepts of programming languages, platform elements, and calls

to libraries.

Similar approaches are discussed in [2], [13], [14], [15]. In [14], [2], transformation

composition are discussed, however neither approach supports design discipline in ex-

plicit way. In [13] predefined architectural and design patterns are provided, thereby

 Adapting Scrum Method to Academic Education ... 117

only systems with fixed architecture can be generated. Finally, [15] provides most ex-

tensive approach, however it supports process of PIM generation, rather than PIM-PSM

transformation.

In future, first challenge is to provide precise and expressive enough approach for

modelling user interface and its behaviour, some promising solutions can be found in

[7]. Other future work is to develop constituent transformations being application of

other design patterns, especially related to user interface like Model-View-Controller

[1], [12].

8. References

[1] Crupi J., Alur D., Malks D.: Core J2EE Patterns: Best Practices and Design Strategies, Second

Edition, Prentice Hall, 2003

[2] Cuadrado J., Molina J.: Modularization of model transformations through a phasing
mechanism. Software and Systems Modeling, 2009.

[3] Czarnecki K., Helsen S.: Feature-based survey of model transformation approaches. IBM Syst.

J., 2006.
[4] Hibernate – Relational Persistence of Idiomatic Java,

http://docs.jboss.org/hibernate/orm/4.1/manual/en-US/html_single/, 2013

[5] Kasprzyk A., Walkowiak A.: Biznesowe korzy´sci ze stosowania standardów oraz
kompleksowych procesów wytwórczych w analizie biznesowej oraz systemowej. In˙zynieria

oprogramowania. Badania i praktyka; Nakom, Poznań, ISBN: 978-83-63919-15-3, 2014

[6] Miller J., Mukerji J., (eds). MDA Guide Version 2.0 OMG, 2014
[7] Object Management Group. Interaction Flow Modeling Language (IFML), 1.0,

http://www.omg.org/spec/IFML/, 2015

[8] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Technical report, http://www.omg.org/spec/QVT/1.1, 2011

[9] Object Management Group. MOF Model To Text Transformation Language (MOFM2T), 1.0,
http://www.omg.org/spec/MOFM2T/1.0/, 2008

[10] Object Management Group. Object Constraint Language (OCL),

http://www.omg.org/spec/OCL/2.3.1/, 2012
[11] Object Management Group. Unified Modeling Language (OMG UML),

http://www.omg.org/spec/UML/2.5, 2013

[12] Schmidt D. C., Henney K., Buschmann F.: Pattern-Oriented Software Architecture: A Pattern
Language for Distributed Computing, John Wiley & Sons, 2007.

[13] Smialek M., Jarzebowski N., and Nowakowski W.: Translation of Use Case Scenarios to Java

Code, Computer Science, 2012
[14] Vanhooff B., Ayed D., Van Baelen S., JoosenW., Berbers Y.: Uniti: A unified transformation

infrastructure. In Model Driven Engineering Languages and Systems, 10th International

Conference, MoDELS 2007, Nashville, USA, Proceedings, pages 31–45. Springer, 2007.
[15] Yue T., Briand L. C., and Labiche Y.: aToucan: An Automated Framework to Derive UML

Analysis Models from Use Case Models, ACM Transactions on Software Engineering and

Methodology, 2015

Chapter 8

Weak Separation of Tightly Coupled

Concerns with Generic Program

Representations

1. Introduction

Generic is a common way to avoid duplicating code. The Standard Template Library

(STL) [1] is a premier example of engineering benefits of generic program

representations. Genericity is a central theme in software reuse, component-based,

pattern-driven development (e.g., facilitated by .NET™ or JEE™), and architecture-

centric Software Product Line (SPL) [1][2] approaches.

Genericity, as understood in this paper, aims at achieving non-redundancy, by

unifying similar software structures with generic program representations to achieve

program simplification, reusability, or maintainability.

The importance of genericity in managing software complexity has been

recognized for long. Macros were one of the early attempts to make programs more

generic. Goguen popularized ideas of parameterized programming [3]. Type

parameterization [4] (called generics in Ada, Eiffel, Java and C#, and templates in C++),

higher-order functions [5], and inheritance can help avoid repetitions in certain

situations. Design techniques such as iterators, design patterns [6], table-driven design

(e.g., in compiler-compilers), and modularization with information hiding [7] can help

us build generic programs. Generative programming techniques, such as XML-based

Variant Configuration Language (XVCL) [8], build a generic program representation at

the meta-level, and derive concrete programs, with possible redundancies, from the

generic meta-level representation.

We can conceive a “generic program representation” as a parameterized structure

that can be turned into a concrete, custom program solution by instantiating the

parameters. The nature of parameters, the mechanism for instantiating parameters, and

the overall process that leads to instantiating a concrete program solution from its

generic counterpart depends on the techniques used for generic design. Parameterized

structures can be as simple as generics or templates, or as complex as an Object-

Oriented (OO) framework or a generic parser. In an OO framework, parameters are

abstract classes and design patterns. Parameters for a generic parser are encoded in BNF

(Backus Normal Form) definition of a programming language syntax. XVCL employs

120 From Requirements to Software: Research and Practice

an unrestricted form of parameterization, in which any software structure may become a

parameter of any other software structure.

A concern is any area of interest in a program solution, pertinent to functional

features, quality requirements, software architecture, detail design, or

implementation. The idea of separation of concerns (SoC) is to break a program into

distinct concerns in order to deal with them separately. As we do so, we try to limit

interactions between concerns as much as it is possible.

SoC principle states that “a given problem involves different kinds of concerns,

which should be identified and separated to cope with complexity, and to achieve the

required engineering quality factors such as robustness, adaptability, maintainability,

and reusability” [9]. We can apply the SoC principle at the levels of program analysis,

design, and implementation [10].

SoC in software development domain was first proposed by Dijkstra in early 1980’s

[11], as a conceptual tool to tackle software complexity. Certain concerns can be nicely

aligned with modular decomposition. Concerns that cannot be localized in modules

have a crosscutting effect on program modules. Recently, a number of unconventional

approaches have been proposed to help in separating and localizing some of the

crosscutting concerns at the meta-level plane of program representation such as

Algebraic Hierarchical Equations for Application Design (AHEAD) [12], Aspect-

Oriented Programming (AOP) [13], Multi-Dimensional Separation of Concerns

(MDSOC) [10], or XVCL [8].

In this paper, we concentrate on cases where physical SoC becomes difficult due to

tight coupling and complex interactions of a given concern with the rest of a program.

We hypothesize that in such cases generic design can offer a viable strategy for

managing complexity, enhancing the visibility of concerns. Situations where concerns

become difficult to separate create opportunity to observe that genericity offers a weaker,

but still useful form of SoC. We hypothesize that genericity is a natural extension to

SoC-concept into the areas where SoC tends to show its limits. Therefore, both

principles are intimately interrelated and synergistic. We believe the reason why

genericity can penetrate software deeper than SoC is that generic design is based on the

notion of unifying similarity of program structures which is less formal and rigorous

than SoC. In the paper, we illustrate our points with examples from lab studies and

industrial projects.

As we argue in support for the above hypothesis, we also discuss the general inter-

play between the two principles. We discuss engineering goals addressed by the two

principles, and technical means to achieve these goals. We observe that there is an

overlapping area where goals and means to separate concerns coincide with those of

generic design. We compare engineering qualities of software designed based on the

principles of SoC and genericity, and hint at the possibility of using both principles in a

synergistic way.

We use the ART1 (a new, refined, and simplified version of XVCL [8]) to illustrate

our analysis of SoC and genericity principles. In previous papers, we described XVCL’s

capability to form generic program representations to support software reuse and

1 Adaptive Reuse Technique (ART), http://art.comp.nus.edu.sg/

Weak Separation of Tightly Coupled Concerns with Generic Program Representations 121

evolution [14][15]. In this paper, we interpret the experiences from the earlier projects

from the SoC perspective. To our best knowledge, our study is the first attempt to

investigate the relation between SoC and genericity. We communicate our findings in

the form of observations (or a hypothesis, at best), not claims.

Section 2 discusses the relation between SoC and genericity. In Section 3, we show

an example of concerns that are difficult to separate. In Section 4, we show generic

program representations for the same example. Section 5 discusses yet another example,

from application software. We analyze observations in Section 6. Related work and

conclusions end the paper.

2. Forms of SoC and Links to Genericity

The main goal of SoC is to deal with a concern separately from other concerns. SoC

benefits magnify if we can separate a concern also at the level of software design and

implementation. Modularization is the most natural conventional technique to achieve

SoC, and some concerns can be nicely aligned with modular decomposition of a

program. In such case, a concern is localized to a single module (a component, class, or

function) or a group of modules (e.g., a component layer), exposing an abstract program

interface (API) to its clients. The details of implementation of a concern become hidden

behind the API [7]. This is an ideal situation from the engineering point of view. To

provide full localization of a concern, management of any variability within a concern

should be either hidden part of a module or supported by suitable API operations. A

modularized and localized concern can be easily added to or taken out from programs,

making programs more generic.

Modularization is also a simple form of generic design. Here, a similarity pattern is

reflected by API. Hidden implementation part of module definition plays a role of a

parameter that makes a module generic. Instantiation of such a “generic module” is

done by defining a specific data representation, and implementing API operations in

terms of the chosen data representation.

By localizing concerns within modules, we achieve SoC and genericity at the same

time.

Concerns that cannot be localized in the above sense have a crosscutting effect on

modules of a primary program decomposition. Some of the crosscutting concerns can be

modularized at the extra meta-level plane using unconventional approaches such as

AOP [13], AHEAD [12], or MDSOC [10].

In AOP, ‘introductions’ and ‘advices’ play the role of parameters of modules of

primary decomposition. We can easily inject or take out some of the aspect code from

modules, which makes modules more generic. The more module’s code can we place in

aspects, the more combinations of aspects can we legally and meaningfully weave into a

module, the more generic a module. A similarity pattern that we unify with AOP is a

functional module that can appear in multiple contexts, with or without aspects. This

interpretation of AOP is in tune with goals of genericity, and we can view AOP as a

kind-of generic design mechanism. In fact, AOP has been considered as a technique for

building SPL architectures [1][2], which justifies the above interpretation.

122 From Requirements to Software: Research and Practice

MDSOC [10] and AHEAD [12] aim at building programs by composing

independently defined concerns. In MDSOC, there is no primary decomposition,

meaning that all the concerns are treated as equal. AHEAD promotes feature-oriented

programming in which features are modeled as mathematical functions, and then

programs are built and evolved by refining those functions. In both cases, an

architecture of concerns from which we can build specific programs by composing

concerns is a generic program representation.

Component platforms hide implementation of some of the potentially crosscutting

concerns, providing transparent access to them via APIs. In JEE™, containers provide a

general mechanism to access, via APIs, services whose implementation crosscuts code

in the containers. Examples of such services include transaction management,

persistence, security, authentication/authorization, and session management, depending

on a container used [16][17]. While not completely eliminating, the JEE infrastructure

makes crosscutting effect more visible and reduced to calls to the container’s API

operations.

The above examples illustrate that whether a given concern has a crosscutting effect

or not depends on a technology used. It also depends on design decisions regarding

modular decomposition and other major mechanisms used in the design of a particular

program.

3. Examples of “Difficult” Concerns

If we could find a way to separate most of the concerns that matter using some

technique, no doubt our software engineering problems would be much lesser than they

are today. However, some of the concerns, are so tightly coupled with modules of

primary decomposition and with one another that their physical separation becomes

difficult. These couplings may not be fully perceived at the concept level, but as

analysis of the exception handling concern shows [18] “the devil is in the details”.

Exception handling is an example of a “difficult” concern: “The main problem is that

realistic software systems exhibit very intricate relationships involving the normal-

processing code and error recovery concerns” [18]. Our experiments with EHAB

(Exception Handling Application Block) on .NET™ [19] also revealed difficulties to

separate exception handling from the rest of the code.

Performance in real-time systems is yet another example of a “difficult” concern.

Performance has pervasive impact on many design decisions. While we can conceive

and express performance concern conceptually (e.g., by documenting design decisions

that have to do with performance), “physical” separation of performance from

functional modules or yet other concerns that interact with performance may not be

feasible.

Our next example is Buffer library, a part of java.nio.* packages in JDK 1.5. Buffer

library implements containers for data in a linear sequence for reading and writing.

Buffer classes differ in buffer element type, memory allocation scheme, byte ordering,

and access mode. Figure 1 shows a feature diagram [20] with five feature dimensions,

with specific variant features listed below a corresponding feature dimension box. Each

Weak Separation of Tightly Coupled Concerns with Generic Program Representations 123

legal combination of variant features yields a unique buffer class. We end up having

many buffer classes with much similarity among them [14].

Feature dimensions are some of the “concerns” in the Buffer library domain. A

developer or maintainer of the Buffer library may be interested to know: “how does an

element type (or access mode) affect implementation of classes?”, “can I separate

certain concerns so that specific features can be incorporated into classes, and relevant

code maintained, in separation from other concerns?”.
Buffer

Element Type
(T)

View Buffer
(VB)

Byte Order
(BO)

Access Mode
(AM)

Memory Allocation
Scheme (MS)

double

char

float

byte

long

short

int

Non-direct Direct

Read-Only Writable Little-Endian Big-Endian Native Non-Native

Alternative features Mandatory features Optional features
Figure 1. Features in the Buffer library

Class names reflect combination of specific features implemented into a given

class. For example, DirectIntBufferR is a Read-Only buffer of integers, implemented

using direct memory scheme. Classes whose names do not include ‘R’, by default are

‘W’—Writable. The Buffer library contains classes whose names are derived from a

template: [MS][T]Buffer[AM][BO], where MS—Memory Allocation Scheme: Heap or

Direct; T—Element Type: Int, Double, Float, Long, Short, Byte, or Char; AM—Access

Mode: W (Writable, default) or R (Read-Only); BO—Byte Ordering: S (non-native) or

U (native), B (Big-Endian) or L (Little-Endian). For simplicity, we can ignore VB—

View Buffer, which is, in fact, yet another concern that allows us to interpret byte buffer

as Char, Int, Double, Float, Long, or Short.

If successful, separation of five concerns, shown as boxes in Figure 1, would result

in some “core structures” and five separately defined concerns. By composing specific

features from each of the concerns into the “core structures”, we would obtain a specific

buffer class implementing these features.

The number of “core structures” should be considerably smaller than the number of

specific buffer classes (around 100) to make SoC worthwhile. Also, we would expect

that the complexity of buffer classes represented by “core structures” plus separated five

concerns would have some attractive engineering qualities, such as reduced conceptual

complexity or reduced maintenance effort, over the original buffer classes in which the

concerns remain intermingled.

The above view of a solution that achieves SoC again reminds generic design

solution, with “core structures” playing the role parameterized representation,

comprising design and code of buffer classes, and concerns playing the role of

parameters that instantiate the “core structures”.

The nature of “core structures”, concerns, and composition mechanism depends on

the SoC technique used. For example, in AOP, “core structures” correspond to some

classes of a primary decomposition, and concerns are ‘introductions’ and ‘advises’ to be

weaved into primary classes. In MDSOC, “core structures” would be treated as just yet

124 From Requirements to Software: Research and Practice

another concern. In AHEAD, concerns are groups of features just as we described

above, and “core structures” correspond to classes that are subjected to refinements.

Now we look into issues involved in trying to separate concerns in the Buffer

library. To separate a concern, we must first see how a given concern affects the

structure of the library and implementation of the classes that have to do with a given

concern. Class naming conventions, described above, make the task of finding classes

relevant to different concerns easy.

Let’s focus on the concern “buffer element type” T and observe its impact on the

buffer classes.

We have no problem to do so in five classes [T]Buffer, where T is restricted to five

numeric types: Int, Double, Float, Long, or Short. These classes are the same except the

respective names affected by element type, highlighted in bold in Figure 2.

In the scope of five numeric types, the “buffer element type” concern can be

separated by means of type parameter with Java generics [14]. (In fact, certain

limitations of Java generics make type parameterization difficult even in this simple

case, but here we are not concerned with language-specific limitations of Java generics.

The reader can find more details in [14]).

public abstract class IntBuffer
…
{

final int[] hb; // Non-null only for heap buffers

IntBuffer(int mark, int pos, int lim, int cap, // package-private

int[] hb, int offset)

{ …

}

IntBuffer(int mark, int pos, int lim, int cap) { // package-private

this(mark, pos, lim, cap, null, 0);

}

public static IntBuffer allocate(int capacity) {

return new HeapIntBuffer(capacity, capacity);

}
…

public static IntBuffer wrap(int[] array, int offset, int length)
…

Figure 2. Fragment of class IntBuffer

Could we make “buffer element type” T an aspect, in the sense of AOP?

If we require that classes of primary decomposition are complete and can be

executed, then the answer is no. Buffer element type is an integral part of any

conceivable primary decomposition in the above sense, and we can’t have a buffer class

without mentioning buffer element type, in either specific (such as Int or Short) or

generic form.

If, on the other hand, we relax the requirement that modules of primary

decomposition must be executable on their own, then we could consider a buffer

element type as an aspect, provided that we can weave code related to the type at

specified join points in classes of primary decomposition.

The exact points where differences among buffer classes (highlighted in bold in

Figure 2) occur do not correspond to what is considered a join point in AOP. While we

could place all the declarations affected by type name into ‘introductions’, and extend

AOP to weave also method headers, it seems that such a solutions would not be in sync

with the spirit of AOP. We rather conclude that the discussed situation is not aspect-

friendly. Current form of AOP is not meant to deal with concerns that affect code in ad

Weak Separation of Tightly Coupled Concerns with Generic Program Representations 125

hoc way, at arbitrary program points. We try to strengthen this point in our further

discussion.

We now extend analysis to two remaining features in the “buffer element type”

concern, namely ‘Char’ and ‘Byte’. Inspection of code reveals that class CharBuffer has

a different implementation of method toString() than any of the numeric buffer classes.

Method toString() converts a buffer element to a character string. In class CharBuffer,

method toString() is trivial, just returns the buffer element, while in numeric buffer

classes this method must do a proper conversion. In addition, class CharBuffer has a

number of extra methods that are not needed in numeric buffer classes. The situation in

ByteBuffer is analogical to CharBuffer. We see many extra methods that do not appear

in numeric buffer classes or CharBuffer.

At this point, we can recap what it takes to separate concern “buffer element type”

in seven classes [T]Buffer, where T is Int, Double, Float, Long, Short, Byte, or Char:

1. We must deal with varying type names and method names (e.g., ‘Int’ is part of

method names in IntBuffer, while ‘Char’ is part of method names in CharBuffer).

2. We must selectively insert extra methods into certain classes.

Extra methods can be easily separated (also aspectized) and weaved into relevant

classes, therefore addressing the remaining two buffer element types ‘Char’ and ‘Byte’

does not raise further complications for SoC. However, it creates a challenge for

generics as extra methods cannot be represented by generic types.

The situation in groups of classes Heap[T]Buffer and Heap[T]BufferR is the same

as in the group [T]Buffer.

Separation of type concern becomes more problematic when we look beyond the 21

classes in the groups [T]Buffer, Heap[T]Buffer, and Heap[T]BufferR. We see more

subtle code dependencies on “buffer element type” concern. For example, in method

slice(), buffer element type causes changes of algorithmic details as shown in Figure 3

(a constant in bold is equal to the length of a buffer element minus one, so the constant

is 0 for Byte).

/*Creates a new byte buffer containing a shared

subsequence of this buffer's content. */

public ByteBuffer slice() {

int pos = this.position();

int lim = this.limit();

assert (pos <= lim);

int rem = (pos <= lim ? lim - pos : 0);

int off = (pos << 0);

return new DirectByteBuffer(this, -1, 0, rem, rem, off);
}

Figure 3. Method slice() in DirectByteBuffer

We also see more drastic impact of other concerns on class implementation. For

example, classes implementing ‘Direct’ memory allocations scheme differ a lot from

analogical classes implementing ‘Heap’ memory allocation scheme. ‘Writable’ classes

differ from analogical ‘Read-Only’ classes. The visibility of concerns becomes blurred.

Trying to look for exact impact of “buffer element type” concern on class

implementation becomes most difficult task, not mention separating the concern.

Still, the “buffer element type” concern seems to be the simplest case. Other

concerns are even more difficult to trace and separate. Interactions between concerns

are not clearly visible in class implementation. Class implementation seems to reflect

the net result of concern interactions in the form that makes SoC difficult.

126 From Requirements to Software: Research and Practice

4. Switching Perspectives

What makes separation of “buffer element type” concern difficult is (1) much variation

in the impact of different buffer element types on class implementation, and (2) subtle,

ad hoc interactions between “buffer element type” and other concerns.

When dealing with “difficult” concerns, a change of the perspective from SoC to

generic design is quite refreshing. Rather than looking for ways to separate concerns,

we look for similarity patterns in program structures that result from interactions among

combinations of concerns implemented into classes. We are still doing a fair amount of

SoC, but in an approximate way, only as far as it is practically achievable.

We have the following seven groups of similar classes in the Buffer library [14]:

1. [T]Buffer: 7 classes at Level 1 that differ in buffer element type, T: Byte, Char, Int,

Double, Float, Long, Short

2. Heap[T]Buffer: 7 classes at Level 2, that differ in buffer element type, T

3. Heap[T]BufferR: 7 read-only classes at Level 3

4. Direct[T]Buffer[S|U]: 13 classes at Level 2 for combinations of buffer element type,

T, with byte orderings: S—non-native or U—native byte ordering (notice that byte

ordering is not relevant to buffer element type ‘Byte’)

5. Direct[T]BufferR[S|U]: 13 read-only classes at Level 3 for combinations of

parameters T, S and U, as above

6. ByteBufferAs[T]Buffer[B|L]: 12 classes at Level 2 for combinations of buffer

element type, T, with byte orderings: B—Big-Endian or L—Little-Endian

7. ByteBufferAs[T]BufferR[B|L]: 12 read-only classes at Level 3 for combinations of

parameters T, B and L, as above.

Similarities among classes manifest themselves as methods and attribute

declarations that appear in different classes in similar form. Some classes contain extra

methods that do not appear in other still similar classes.

It should be noticed that seven groups of similar classes are organized around

concerns: each group is characterized by concerns that vary across classes in a group,

and yet other concerns that are fixed.

We now proceed to the part where we apply generic design to unify similarity

patterns with the help of a generative technique of the ART. As we define generic

solutions using conventional programming technologies (languages and platforms)

together with the ART, we call the approach mixed-strategy.

We start with a concrete program, or at least with some idea of a program’s

component/class architecture, and its partial implementation. In case of our experiment,

we start with the existing Java buffer classes. We represent each group of similar

program structures (methods or classes), with unique, generic customizable structure

built with the ART applied on top of Java.

We can imagine that the ART decomposes a conventional program in its own way,

wrapping structures of a subject program (of any granularity and type) within the ART

constructs to make them generic. It is important to notice that unification of similarity

patterns occurs only at the level of an ART representation (left-hand-side of Figure 4).

An executable program derived from the ART representation may still contain

repetitions, if that’s required or unavoidable. Sometime repetitions are required for

performance or reliability reasons. Yet other may be unavoidable given a programming

Weak Separation of Tightly Coupled Concerns with Generic Program Representations 127

technology used (e.g., on JEE™ or .NET™ platforms [21], see also [22]), and/or taking

into account possibly yet other design goals a program must meet [14].

Java/ART-template solution for buffer classes

attribute declarations

Level 3: generic classes

Level 2: class specifications

Level 4: generic methods

Level 1: Buffer specifications

method fragmentLevel 5: generic fragments

ART Processor

IntBuffer

ByteBuffer

CharBuffer

Java buffer classes

SPC

Heap[T]Buffer.spc[T]Buffer.spc …

[T]Buffer.art Heap[T]Buffer.art

hasArray() slice()

…

Figure 4. A Java/ART mixed-strategy solution for buffer classes

A building block of an ART generic program representation is called an ART

template. An overall solution, a hierarchy of generic structures, is called an ART-

template solution. In case of the Buffer library, we build a generic representation in

combination of Java and ART, therefore we call it a mixed-strategy Java/ART-template

solution, shown in Figure 4. An arrow between two ART templates: X → Y means that

Y is used, after possible adaptations, to build X.

We derive all the classes in each of the seven groups of similar classes from the

ART-template solution shown in Figure 4. Each of the Level 3 ART templates plays the

role of a template defining a common part for all the classes in the respective group. For

example, seven classes in the group [T]Buffer are derived using [T]Buffer.art as a

template. ART template [T]Buffer.spc contains specifications instructing the ART

Processor how to adapt [T]Buffer.art and other ART templates at levels below it to

derive classes in the [T]Buffer group. We have analogical solutions in parts of the buffer

ART-template solution for other six groups of similar classes.

In our example, for the sake of comparison, we designed ART-template solution so

that classes produced by the ART Processor are no different from the original classes in

the Buffer library.

The essence of an ART template is that it can be adapted to produce its instances

(e.g., specific classes in a group). Smaller granularity building blocks for classes are

defined at Level 4 (methods) and Level 5 (fragments of method implementation or

attribute declaration sections). Therefore, small-granularity generic solutions

(represented by the lower-level ART templates) are composed, after possible adaptations,

to construct required instances of higher-level generic solutions (represented by higher-

level ART templates).

ART templates at Level 1 and Level 2 tell the ART Processor how to derive specific

buffer classes from the ART-template solution. The top-most template called SPC sets

up global parameters and exercises the overall control over the generation process.

Specifications of controls for each of the seven groups of similar classes are at Level 2.

ART Processor interprets an ART-template solution starting from the SPC, traverses

ART templates below, adapting visited ART templates and emitting the custom program.

By varying specifications, we can instantiate the same ART-template solution in

different ways, deriving different, but similar, program components from it. In that

sense, an ART-template solution forms a generic program representation that enables

128 From Requirements to Software: Research and Practice

reuse within a single program or across programs. In the latter case, an ART-template

solution implements a concept of the SPL architecture [2].

To better see the nature of an ART-enabled generic solution and its relation to SoC,

we now explain the parameterization and adaptation mechanism, which is the “heart and

soul” of how the ART achieves genericity. Figure 5 shows the details of a fragment of

the Java/ART-template solution shown on the left-hand-side of Figure 4.

ART variables and expressions are parameters. Typically, names of program

elements manipulated by the ART, such as components, source files, classes, methods,

data types, operators, or algorithmic fragments, are represented by ART expressions.

Using such parameters, rather than concrete names, makes ART templates more generic,

adaptable to fit into multiple contexts. For example, names and other parameters of the

seven similar classes [T]Buffer are represented by ART expressions in the ART template

[T]Buffer.art (Figure 5).

#set command assigns values to a variable. For example, #set command in line 2 of

the SPC assigns values listed on the right-hand-side to a variable named elmtType.

Expression ?@elmtType? refers to one of such values (further details to follow).

1 % specifies how to generate all the buffer classes
2 #set elmtType = "Byte", "Char", "Double", "Float", "Int", "Long", "Short"
3 #set type = "byte", "char", "double", "float", "int", "long", "short"
4 #set elmtSize = "0", "1", "3", "2", "2", "3", "1"
5 #adapt "[T]Buffer.spc"
6 #adapt "Heap[T]Buffer.spc"
7 …
8 #adapt "ByteBufferAs[T]BufferR[B|L].spc"1 % specifies how to generate seven [T]Buffer classes

2 #while elmtType
3 #select elmtType
4 #option Byte
5 #adapt [T]Buffer.art
6 #insert moreMethods
7 #adapt methodsForByteBuffer.art
8 #endoption
9 #option Char
10 #adapt [T]Buffer.art
11 #insert toString
12 Public String toString()
13 { return toString(position(), limit()); }
14 #endoption
15 #otherwise
16 #adapt [T]Buffer.art
17 #endotherwise
18 #endselect
19 #endwhile

1 % a generic [T]Buffer class that output file @elmtTypeBuffer.java
2 #output ?@elmtType?"Buffer.java"
3 package ?@packageName?;
4 public abstract class ?@elmtType?Buffer

extends Buffer implements Comparable
5 #adapt commonAttributes.art
6 #break moreAttributes
7 #adapt commonMethods.art
8 #break moreMethods
9 #break: toString
10 % default content
11 public String toString() {
12 StringBuffer sb = new StringBuffer();
13 sb.append(getClass().getName());
14 …etc…
15 return sb.toString(); } }
16 #endbreak

1 % generic representation of methods common
2 % to [T]Buffer and may be yet other classes, e.g.,
3 public static ?@elmtType?Buffer wrap(?@type?[] array) {
4 return wrap(array, 0, array.length); }

1 % methods specific to ByteBuffer only
2 public static ByteBuffer allocateDirect(int capacity)
3 { return new DirectByteBuffer(capacity); }

SPC

[T]Buffer.spc

[T]Buffer.art

methodsForByteBuffer.art
commonMethods.art

Figure 5. A Java/ART-template solution for seven [T]Buffer classes (partial)

ART parameters also play an important role of control elements that mark traces of

customization changes related to a single source, that span across multiple ART

templates. This “source” often represents a concern or a specific feature within a

concern. For example, elmtType is one of the variables that mark customizations related

to “buffer element type” concern. The ART Processor propagates variable values from

an ART template where the value of a variable is set, down to the adapted ART

Weak Separation of Tightly Coupled Concerns with Generic Program Representations 129

templates. While each ART template usually sets default values for its variables, values

assigned to variables in higher-level templates take precedence over the locally assigned

default values. Thanks to this overriding rule, ART templates become generic and

adaptable, with potential for reuse in unifying similarity patterns in many contexts.

Other ART commands, such as #select, #insert into #break, and #while,

collectively help us design generic solutions. At the same time, they also contribute to

enhancing the visibility concerns. #select command directs processing into one of the

many pre-defined branches (called options), based on the value of its control variable.

With #insert command, we modify ART templates at designated #break points in

arbitrary ways. ART expressions, #select and #insert into #break are analogous to

AOP’s mechanism for weaving ‘advices’ at specified join points. The difference is that

while AOP specifies joint points in a descriptive way, #inserts modify ART templates in

arbitrary ways, at any explicitly designated #break points.

#while command iterates over ART template(s), with each iteration generating

similar, but with minuscule differences, program structures. #select command in the

#while loop allows us to derive classes in each of the seven groups discussed in Section

3. This is a key element of the ART strategy that allows us to unify similarity patterns at

the level of mixed-strategy representation (i.e., in an ART-template solution), and still

have repetitions in a program that ART Processor derives from an ART-template

solution.

Now, we comment on the above mechanisms in more details, referring to Figure 5

that shows a partial Java/ART-template solution for the Buffer classes. ART commands

and references to ART variables are shown in bold. References to ART variables

(highlighted in bold) can be embedded in the code. For example, a reference to ART

variable elmtType is written ?@elmtType? (line 4 in [T]Buffer.art), which is replaced

by the variable’s value during processing. Figure 6 shows generic method slice() from

Direct[T]Buffer[S|U] classes (a specific instance of method slice() is shown in Figure 3).

Values of variables set in SPC reach all their references in adapted ART templates. The

value of variable byteOrder is set to an empty string, ‘S’ or ‘U’, in a respective #set

command placed in one of the ART templates that #adapts ART template slice.art (not

shown in our figures).

1 public ?@elmtType?Buffer slice() {
2 int pos = this.position();
3 int lim = this.limit();
4 assert (pos <= lim);
5 int rem = (pos <= lim \? lim - pos : 0);
6 int off = (pos << ?@elmtSize?);
7 return new Direct?@elmtType?Buffer?@ByteOrder?(this, -1, 0, rem, rem, off);
8 }

slice.art

Figure 6. Generic method slice() recurring in 13 Direct[T]Buffer[S|U] classes

The #while loop in [T]Buffer.spc (lines 2–19) is controlled by a multi-value

variable, namely elmtType. The i’th iteration of the loop uses i’th value of the variable.

In each iteration, the #select command uses the current value of elmtType to choose a

proper #option for processing.

#output command in [T]Buffer.art (line 2) defines the name of a file where ART

Processor will emit the code for a given class.

130 From Requirements to Software: Research and Practice

Having set values for the ART variables, the SPC initiates generation of classes in

each of the seven groups of similar classes via suitable #adapt commands. ART

template [T]Buffer.art defines common elements found in all seven classes in the group.

Five of those classes, namely DoubleBuffer, IntBuffer, FloatBuffer, IntBuffer, and

LongBuffer differ only in type parameters (as in the sample method wrap() shown in

ART template commonMethods.art). These differences are unified by ART variables,

and no further customizations are required to generate these five classes from

[T]Buffer.art. These five classes are catered for in #otherwise clause under #select

(lines 15–17 in [T]Buffer.spc). However, classes ByteBuffer and CharBuffer have some

extra methods and/or attribute declarations. In addition, method toString() has different

implementation in CharBuffer than in the remaining six classes. Customizations specific

to classes ByteBuffer and CharBuffer are listed in the #adapt commands, under #option

Byte and #opetion Char, respectively.

The above described ART template solution is meant to illustrate our points about

relationship between genericity and SoC. Evaluation of engineering qualities of ART-

template solution is not in the scope of this paper. We refer the reader to the website for

the discussion of trade-offs involved in applying the ART.

5. Another Example of a “Difficult” Concern

Buffer library is a very special type of a program. In this section, we show how a

problem observed in the Buffer library occurs in an application software.

A Domain Entity Management System (DEMS) is contributed by ST Electronics

Pte Ltd (STEE), an industrial partner in our projects. DEMS was implemented in C#

that contained 117 classes covering GUI, service and database layers. DEMS involved

13 domain entities (such as User or Task) with up to 10 operations per entity (such as

Create or Delete). Each combination of entity-operation is implemented by a pattern of

collaborating components, two of which are shown in Figure 7. Each such pattern

involves classes from four system layers. Each box in Figure 7 contains a number of

classes pertaining to user interface, business logic, database communication, or database

table definition layer.
«GUI classes»

Create UserForm
«GUI classes»

Create TaskForm GUI

«service classes»
Logic for User

«service classes»
Logic for Task

Services

«entity class»
User

«entity class»
Task

Entity

«DB class»
UserTable

«DB class»
TaskTable

Database

executes

visualizes visualizes

executes

accesses accesses

stores stores

Figure 7. A recurring pattern of components

Weak Separation of Tightly Coupled Concerns with Generic Program Representations 131

Some of the concerns in DEMS are domain entities, operations, and the four system

layers shown in Figure 7.

Separating domain entity concern would mean that any entity-specific code would

have to be isolated in a form that could be injected into the rest of DEMS using some

composition mechanism. Operation concern is symmetric to domain entity concern, and

its separation would require a similar solution.

SoC along the domain entity or operation dimension is difficult because of much

differences in the requirements for specific domain entities (such as User or Task)

operations that apply to different entities (such as CreateUser or CreateTask). The

essence of difficulties is same as in the case of Buffer library, namely (1) much variation

in the impact of different domain entities on operations, and (2) subtle, ad hoc

interactions between concerns.

Now we look at the problem from the genericity perspective. There are many

similarities among patterns of components implementing the same operation for

different entities. There are also differences among patterns caused by different meaning

of domain entities: For example, operation Create for a Task required different types of

data entry and data validation than Create for a User. Ad hoc, induced by real-world

DEMS requirements, nature of difference among patterns makes it difficult to design

“generic pattern” using conventional techniques, but such a solution can be built with

the ART.

Figure 8 shows an outline of DEMS as a generic C#/ART-template solution. At

Level 4, each group of operations such as CreateUser, CreateTask,… has been

represented by one generic operation parameterized by the respective domain entity.

Similarities among different operations for the same entity (e.g., CreateUser,

UpdateUser,…) are unified at Level 5. ART templates at Level 5 represent generic

classes, building blocks for DEMS operations, as indicated by ART templates

referenced from more than one operation (e.g., generic classes labeled with CU are

reused in construction of Create and Update for various entities).

C CU

CreateUser

CreateTask

CreateResource

… Create for other entities

UpdateUser

UpdateTask

UpdateResource

… Update for other entities

other operations

ART
Processor

Level 3:

Level 4:

Level 5:

DEMS in C#/ART mixed-strategy representation DEMS in C#

U CU

SPC

Create.spc Update.spc View.spc Delete.spc Find.spc

Level 1:

othersLevel 2:

DEMS template

Create[E] View[E]Update[E] Delete[E] Find[E]

Figure 8. Hierarchical unification of similarities

The top-most template SPC contains global controls and parameter settings that

specify the overall process of constructing DEMS from the templates below. ‘DEMS

template’ at Level 3 defines the structure of the DEMS architecture, that is the

organization of component patterns implementing various operations plus any other

functions supported by DEMS, not discussed in this example. ART-template solution

described above should be accepted as a proof of concept. Lack of space does not allow

132 From Requirements to Software: Research and Practice

us to evaluate the cost-benefit trade-offs involved in the application of the ART. We

refer the reader to the website.

6. Summary and Analysis of Observations

The examples discussed above illustrate some difficulties to achieve clean SoC, and

how generic design, by looking at the problem from a different angle, achieves a weaker

form of separating concerns. Now, we summarize observations, trying to distil

observations that carry some more general message from those that are specific to our

examples or to the use of the ART.

Both SoC and genericity are realized by a mixture of top-down and bottom-up

activities.

In SoC, first intentions are conceived at the concept level, and then we try to

separate concerns at the design and implementation levels. Moving from the concept

level down to the design and implementation, we observe the nature of concern

design/implementation, and identify yet other “lower-level” concerns.

In generic design, first we identify similarity patterns inherent in application

domain concepts. In case of platforms such as JEE™ or .NET™, we also consider

recurring patterns of program organization induced by a platform, as we can expect to

see them in any program developed on a given platform. Then, as we design and

implement a program (or work with an existing program as in our example), we observe

similarities in the actual program structures. For significant groups of such similar

program structures, we design generic, adaptable representation.

At times, SoC cannot be achieved at the actual program level, using features of

conventional programming languages. The same is true for generic design. When

conventional techniques fail to deliver a workable solution, AOP and the ART try to

overcome the problem at an extra meta-level plane.

SoC at the design/implementation level increases genericity of program structures.

We can view program structures as being “parameterized” by concerns. By composing

concerns, we instantiate program structures in variant forms. In that sense, program

structures gain genericity and reusability due to SoC. We observe this in the case of

concerns that can be separated using conventional programming techniques (such as

modularization or generics), as well as concerns that can be separated by supporting

techniques such as AOP, MDSOC, AHEAD, JEE containers, XVCL, or ART.

In case of separable concerns, there may be still a room for generic design, as

program structures parameterized by concerns may still exhibit similarity due to yet

other reasons not related to given concerns. For example, we can apply AOP to separate

certain aspects, but modules of primary decomposition may still contain similarities

induced by similar user-level requirements. These similarities create opportunities for

generic design to further simplify software solution.

We believe the above observations are general. Our discussion of “difficult”

concerns, becomes necessarily dependent on a technique used for generic design in our

experiments that is the ART. In both examples discussed in Sections 4 and 5, we can see

an element of SoC, however we give priority to one concern at the expense of others. In

the Buffer library, we bet on “buffer element type” concern. ART variables set in the

Weak Separation of Tightly Coupled Concerns with Generic Program Representations 133

top-most SPC are all related to this concern and they navigate the process of adapting

ART templates below. These variables and ART constructs controlled by them enhance

the visibility of the “buffer element type” concern. We can see the impact of buffer

element types on the ART templates below the SPC and other ART templates adapted

from there.

ART representation improves the visibility of other concerns, due to groupings of

similar classes into groups, but here the SoC is less systematic.

In the DEMS example, we give priority to separating “operation” concern over

“domain entity” concern. A criterion in making this decision is the extent of similarity in

operations across domain entities as opposed to domain entities across operation.

Our technology-dependent experiences seem to point to observations of a general

nature: The concept of similarity is less formal than the concept of cleanly separated

concerns. We can identify similar program structures by top-down domain analysis,

combined with bottom-up analysis of design and code (possibly supported by clone

detector [23][24]). We can zoom into similarity areas that are significant. Having

identified a group of similar program structures, we can always analyze the exact

differences among them.

While it is relatively easy to find similarities, spotting the exact impact of “difficult”

concerns is more difficult. Focusing on similarities, we do not even have to fully

understand the exact nature of a given concern or complex interactions among the

concerns. Instead, we stay at the level of observing the symptoms of net effect of

concern interactions.

7. Related Work

Modular decomposition with information hiding [7], macros, generics in Ada or Java

[4], templates in C++, other forms of parameterization such as higher order functions

[5], inheritance with dynamic binding, and design patterns [6] are some of the

conventional design techniques to achieve genericity. AOP [13] and MDSOC [10]

support genericity by separating cross-cutting concerns. In AHEAD [12] (based on the

earlier Batory’s work on GenVoca), genericity is supported by feature composition and

refinement. Many techniques described under the umbrella of generative techniques

[25], notably meta-programming with C++ templates, achieve genericity as well as

certain forms of SoC. Domain analysis [26] is essential in identifying high-level, large

granularity patterns of similarity. Generic solutions unifying such patterns are most

beneficial for programmer’s productivity as they can significantly reduce the size and

complexity of the solution. Software architectures [1][2], architectural styles [27], and

patterns [2] help developers avoid repeatedly designing the same solution by providing

component plug-in plug-out capability. Component platforms such as JEE™ or .NET™,

provide also an infrastructure for reuse of pre-defined common services.

Code cloning has received much attention in research. As clones are closely related

to the notions of similarity patterns and genericity, we discuss them in this section.

Cloning has been studied in the context of re-engineering [28], refactoring [29] and

clone detection [28][23][24]. In an empirical study of cloning practices Kim et al. [22]

134 From Requirements to Software: Research and Practice

observed that “Limitations of particular programming languages produce unavoidable

duplicates in a code base”.

8. Conclusions

We considered situations where attempts to cleanly separate concerns fail. We showed

that generic design can enhance the visibility of inseparable concerns, offering a weaker,

but still useful form of SoC. We believe the reason why genericity can penetrate

software areas deeper than SoC is that genericity, based on the notion of unifying

similar program structures, is less formal and rigorous than SoC: Arbitrary software

structures that exhibit enough similarity can be unified with generic program

representations, using unconventional techniques such as the ART. This makes

genericity technically easier to achieve than SoC.

In this paper, we made yet other observations, in the form of hypothesis rather than

claims, about the general inter-play between SoC and genericity: There is an

overlapping area where the goals of SoC and genericity, as well as means to achieve

them, are the same. For example, type parameterization or modularization with

information hiding separates a concern and achieves genericity at the same time. We can

view program structures as being “parameterized” by concerns. By composing concerns,

we instantiate program structures in variant forms. In that sense, program structures gain

genericity and reusability due to SoC. In case of separable concerns, there may be a

room for generic design to further improve engineering qualities of a program solution,

as program structures parameterized by concerns may still exhibit similarity due to yet

other reasons not related to given concerns. For example, we can apply AOP to separate

certain aspects, but modules of primary decomposition may still contain similarities

induced by similar user-level requirements.

In our future work, we conduct comparative studies to zoom deeper into the

interplay between SoC and genericity principles, and further test our observations. We

hope the proponents of techniques that have to do with SoC and genericity will

contribute their solutions to selected problems. No doubt comparison of solutions

developed using different techniques would allow us to see clearer the potentials and

limitation of each of the discussed principles, and their synergistic application to form

maintainable and reusable software representations.

Concerns related to different areas of a software system have different properties.

For example, user requirement-level concerns, reflected in user interface and business

logic software layers, tend to be less separable than software functions typically

addressed by aspects [13]. An interesting area of study is development of a concern

ontology. A concern ontology would help one express research results on SoC and

genericity in more precise terms. We plan to extend our study described in this paper to

cover possibly wide range of concern types.

Weak Separation of Tightly Coupled Concerns with Generic Program Representations 135

References

[1] D. Musser and A. Saini, STL Tutorial and Reference Guide: C++ Programming with Standard

Template Library, Addison-Wesley, USA, 1996.

[2] J. Bosch, Design and Use of Software Architectures – Adopting and Evolving a Product-Line Approach,
Addison-Welsey, USA, 2000.

[3] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns, Addison-Wesley, USA,

2002.
[4] J.A. Goguen, Parameterized Programming, IEEE Trans. on Soft. Eng., SE-10(5), 1984, pp. 528–543.

[5] R. Garcia, J. Järvi, A. Lumsdaine, J. Siek, and J. Willcock, A Comparative Study of Language Support

for Generic Programming, Proc. 18th ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages, and Applications, 2003, pp. 115–134.

[6] S. Thompson, Higher Order + Polymorphic = Reusable, unpublished manuscript available from the

Computing Laboratory, University of Kent, http://www.cs.ukc.ac.uk/pubs/1997.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns – Elements of Reusable Object-

Oriented Software, Addison-Wesley, USA, 1995.

[8] D. Parnas, On the Criteria To Be Used in Decomposing Software into Modules, Communications of the
ACM, 15(12), 1972, pp.1053–1058.

[9] XVCL (XML-based Variant Configuration Language), http://xvcl.comp.nus.edu.sg.

[10] Aspect-Oriented Software Architecture Design Portal, http://trese.cs.utwente.nl/taosad/separation_of_
concerns.htm.

[11] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, N Degrees of Separation: Multi-Dimensional Separation

of Concerns, Proc. International Conference on Soft. Eng., ICSE’99, Los Angeles, 1999, pp. 107–119.
[12] E.W. Dijkstra, On the Role of Scientific Thought, Selected Writings on Computing: A Personal

Perspective, Springer-Verlag, New York, 1982, pp. 60–66.

[13] D. Batory, J.N. Sarvela, and A. Rauschmayer, Scaling Step-Wise Refinement, Proc. Int. Conf. on Soft.
Eng., ICSE’03, 2003, Portland, Oregon, USA, pp. 187–197.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and J. Irwin, Aspect-

Oriented Programming, European Conf. on Object-Oriented Programming, Finland, 1997, pp. 220–

242.

[15] S. Jarzabek and S. Li, Unifying Clones with a Generative Programming Technique: A Case Study,

Journal of Software Maintenance and Evolution: Research and Practice, 18(4), 2006, pp. 267–292.
[16] S. Jarzabek, Effective Software Maintenance and Evolution: Reuse-based Approach, Taylor & Francis,

USA, 2007.

[17] A. Mesbah and A.V. Deursen, Crosscutting Concerns in JEE Applications, Proc. 7th IEEE International
Symposium on Web Site Evolution, WSE’05, Budapest, Hungary, Sept. 2005, pp. 14–21.

[18] Private communication with Ali Mesbah and Arie van Deursen, authors of [16].
[19] F. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, and C. Rubira, Exceptions and Aspects: The

Devil is in the Details, Int. Symp. Foundations of Soft. Eng., FSE’06, 2006, USA, pp. 152–162.

[20] Exception Management Architecture Guide ver 1.0. Microsoft Patterns & Practices, 2003, Available at:

http://www.usol.com/~joe/Exception%20Management%20-%20EntLib.pdf.
[21] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, Feature-Oriented Domain Analysis (FODA)

Feasibility Study, Technical Report, CMU/SEI-90-TR-21, SEI, CMU, Pittsburgh, 1990.

[22] J. Yang and S. Jarzabek, Applying a Generative Technique for Enhanced Reuse on JEE Platform, 4th Int.
Conf. on Generative Programming and Component Engineering, GPCE'05, 2005, Tallinn, pp. 237–

255.

[23] M. Kim, V. Sazawai, D. Notkin, and G. Murphy, An Ethnographic Study of Code Clone Genealogies,
Proc. Euro. Soft. Eng. Conf. and Int. Symp. Foundations of Soft. Eng., 2005, Portugal, pp. 187–196.

[24] H.A. Basit and S. Jarzabek, A Data Mining Approach for Detecting Higher-Level Clones in Software,

IEEE Trans. Softw. Eng., 35(4), 2009, pp. 497–514.
[25] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A Multi-linguistic Token-based Code Clone

Detection System for Large Scale Source Code, IEEE Trans. Soft. Eng., 28(7), 2002, pp. 654–670.

136 From Requirements to Software: Research and Practice

[26] K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, USA, 2000.

[27] R. Prieto-Diaz, Domain Analysis for Reusability, Int. Comp., Soft. & Appl. Conf., COMPSAC’87, 1987,

Tokyo, Japan, pp. 23–29.
[28] M. Shaw and D. Garlan, Software Architecture: Perspectives on Emerging Discipline, Prentice Hall,

USA, 1996.

[29] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, Clone Detection using Abstract Syntax Trees,
Proc. Int. Conf. on Software Maintenance, ICSM98, 1998, pp. 368–377.

[30] M. Fowler, Refactoring - Improving the Design of Existing Code, Addison-Wesley, USA, 1999.

III. Embedded and Web Systems

Chapter 9

Experimental Real-Time Arinc 653 Based

Pitch Angle Control Application

1. Introduction

Modern airliners increasingly use computer systems to improve operational features of

almost all onboard systems. Gradually, avionic computer programs are executed under

real-time operating systems (RTOS) [6, 7, 8, 15, 16]. This involves some new software

development techniques which have to be applied into aviation.

Recently, due to progress in engineering, airborne real-time systems have been

evolving from the so-called “federated structure” to something new - Integrated Module

Avionics (IMA) [2, 3, 4, 5, 9, 13]. The IMA concept has been introduced through

European research projects: PAMELA, NEVADA and VICTORIA. The result was the

first generation of IMA (IMA1G), currently onboard A380, A400M and B787 aircraft.

Following the IMA concept, modern onboard avionic subsystems (software

applications) should be grouped into a limited set of standard microprocessor units. The

microprocessor units and other electronic devices should communicate via standard

network interface - Avionics Full Duplex Switched Ethernet (AFDX) [2, 3]. So far

physically and logically separated (federated) avionic units were going to be converted

into groups of real-time applications controlled by real-time operating systems. The

current implementation of IMA covers a limited range of aircraft functions but shows

that it may bring some significant benefits: aircraft weight reduction and lowered

maintenance costs.

Next step of development of integrated avionics was to define a scalable,

reconfigurable fault-tolerant driven and secure new avionics platform, called Distributed

Modular Electronics (DME) which announces IMA(2G) family of devices. But before it

happened it had had to be tested and confirmed if DME units could have been

effectively used as hard real-time applications platforms. The research reported in this

paper, done within the European SCARLETT program [20], involved the new DME

units evaluation as a hardware platform for real time applications The preliminary

research results acquired in this area were published in [14, 15, 16]. Next sections of the

paper are organized as follows. Firstly, Distributed Modular Electronics concept as well

as the ARINC specification 653 are briefly presented. Next, an experimental aircraft

Pitch Angle Control Application (PACA) is introduced (an illustrative example of the

ARINC 653 based hard real-time avionic control system). The final part of the paper

includes some application development remarks as well as final system tests reports.

140 From Requirements to Software: Research and Practice

2. Distributed Modular Electronic concept

Distributed Modular Electronics (DME) goes directly from IMA concept and has

been developed very dynamically during last years. DME should improve the following

features of avionics systems:

• Scalability, portability and adaptability,

• Fault tolerance and reconfiguration capabilities,

• Number of standardized electronic module types could be minimized,

• The full range of avionics function should be supported.

DME oriented avionics provides few basics computer units as platforms for real-

time software:

• CPM (Core Processing Module) offers generic computation capability, an AFDX

or other communication,

• REU (Remote Electronics Unit) is an electronics box dedicated to a specific task

and is mounted geographically close to where this task occurs. REUs are not

generic units and therefore not part of the IMA perimeter. However, the interfaces

of REUs to the IMA world shall be standardized,

• RDC (Remote Data Concentrator) is a type of equipment which supports the

exchange of information between sensors/actuators (digital, discrete and analogue

data) and aircraft digital communication networks (ADCN). The RDCs are located

in pressurized areas close to sensors and effectors, which may be potentially remote

from the associated processing resources rather than in the avionics bay,

• RPC (Remote Power Controller) is a power switching “unit based on SSPCs (Solid

State Power Controllers). They are able to control the switching of loads with

current limitation, self-test, leakage protection, etc. so they are not strictly

equivalent to relays.”

Although the individual DME hardware devices may communicate with some

external devices using a wide set of interfaces, such as CAN, RS or Field Bus, the main

medium of the inter-DME units’ communication should be AFDX [2, 3] - a redundant

and reliable Ethernet network developed and standardized by the European constructors

of the avionics which equip the Airbus A380. The switches of the AFDX network are

star couples, provide packet forwarding, and they also have additional features to

guarantee the timing and bandwidth allocation of the entire network, but they only use

multicast addresses (Virtual Links). The AFDX internal message format should follow

ARINC specification 664 [3]. The software modules executed on the hardware units

should be developed according to ARINC specification 653 [4].

Within the SCARLETT project, the aforementioned set of hardware modules was

configured into several laboratory demonstrators. Their task was to assess whether the

developed DME units might be effectively used in the next generation of IMA.

3. ARINC Specification 653P1-2

One of the main IMA concepts assumes the reduction of the number of the

individual microprocessor units installed on-board. However, this also entails a new

paradigm in avionics development. The group of federated applications which have

 Experimental Real-Time Arinc 653 Based Pitch Angle Control Application 141

been executed up to now on separate microprocessor units (communicating by means of

ARINC standard 429 based devices [1], for example) must become a set of real-time

processes executed on one microprocessor. This is managed by a specialized real-time

operating system and communication by means of a specialized Ethernet computer

network. Provided that the operating system offers a standard API and fulfills safety

requirements, this proposed solution significantly broadens the portability of avionic

applications and makes it possible to develop and certify hardware and software

independently.

 Partitions

The IMA assumes that a set of time-critical and safety-critical real-time

applications (avionics units) may be executed on one microprocessor module.

Figure 1. Logical real-time operating system structure created according to ARINC 653P1-2 specification[4].

To cope with this level of criticality, new real-time operating system architecture was

suggested. ARINC 653P1-2 [4] defines the generic system structure. Figure 1 shows the

RTOS logical structure which was suggested for avionic systems.

The key concept introduced of the specification is partition. It constitutes a kind of

container for an application and guarantees that the execution of the application is both

spatially and temporally isolated. The partitions have been divided into 2 categories:

application partition and system partition. The application partitions are dedicated to

executing avionics applications. They can exchange data with the environment by

means of specific interface – APEX (APplication/EXecutive). The system partitions are

optional and their main role is to provide services that had not been predicted in APEX,

such as device drivers or fault management.

142 From Requirements to Software: Research and Practice

 Hardware-Software Module Architecture

The ARINC 653P1-2 also includes some recommendations regarding the

microprocessor module architecture for the specialized real-time operating system. The

general schema of the architecture is presented in figure 2.

Figure 2. Logical real-time operating system structure created according to ARINC 653P1-2 specification[4].

Each module may include one or more microprocessors. The hardware structure may

require some core operating system modification but not the APEX interface. All the

processes that belong to one application partition (real-time tasks) must be executed on

one microprocessor and it is forbidden to allocate them to different microprocessors

within the module or between modules. The application program should be portable

between processors within the module and between modules without any modifications

to the interface of the operating system core. The processes that belong to one partition

may be executed concurrently. A separate partition-level scheduling algorithm should

be responsible for this. Inter-application (partition) communication is based on a ports

and channels concept. The applications do not have the information about which

partition the receiver of data is being executed on. They send and receive data via ports.

The ports are virtually connected by channels which are defined in a separate level of

system development.

An important element of the module should also be a Health Monitor (HM). It is an

operating system component that ought to monitor hardware as well as the operating

system and application faults and failures. Its main task is to isolate faults and prevent

failure propagation. As an example, the HM is permitted to restart a partition when it

detects an application fault.

The temporal isolation of each partition has been defined as follows, a major time

frame is defined for each module. It is activated periodically. Each partition receives

one or more time partition windows to be executed within this major time frame.

 Experimental Real-Time Arinc 653 Based Pitch Angle Control Application 143

Generally, time partition windows constitute a static cyclic executive [6]. Real-time

tasks executed within the partition can be scheduled locally according to a priority-

based policy. The order of the partition windows is defined in a separate configuration

record of the system.

In general, the applications that reside within partitions may be developed by

separate application providers. Thereafter a separate role in the IMA system

development process has been proposed. This person or organization, “an integrator”,

has to collect the data regarding resources, timing constraints, communication ports and

exceptions defined in each partition. Then the collected data is transferred into

configuration records. The configuration record for each module is an XML document

interpreted during compilation and consolidation of the software.

 APEX Interface

The main part of ARINC 653P1-2 is the APEX interface definition. The APEX makes it

possible to create platform-independent software that fulfils ARINC 653 requirements.

The three main components of the interface are: real-time application creation and

maintenance; partition management; intra- and inter-partition communication.

The application may be constructed as a set of (soft or hard) real-time processes,

which are scheduled according to their priorities. It is possible to develop both an event-

and a time-driven process activation policy.

The APEX interface provides a separate set of functions that enables the user to

determine the actual partition mode and change it. The application may start the

partition after the creation of all the application components or monitor the actual

partition mode. It is also possible to restart the partition.

The synchronization of processes that belong to one partition may be achieved by

the appropriate application of counting semaphores and events. The inter-process

communication within the partition (intra partition communication) is made possible by

means of APEX buffers (shared message queues) and APEX blackboards (shared

variables). Inter partition (application) communication is based on queuing port and

sampling port communication units. The queuing port provides an inter-partition

message queue, whereas the sampling port makes it possible to share variables between

the ports. During system integration, the ports are connected by means of channels

defined in the system configuration tables. The ports may be applied for communication

with: other partitions, device drivers within the module or to exchange data between

modules (by means of AFDX network interfaces).

4. Pitch Control Hard Real-Time Application

The paper reports some author’s work under aviation software module which satisfies

ARINC 653, ARINC 664 requirements and is intended to run on DME modules. The

application was created as a piece of software realizing selected control functions of an

autopilot system. It demonstrates that software prepared according to ARINC 653,

ARINC 664 rules could be used to control aircraft flight. Control algorithm of pitch

144 From Requirements to Software: Research and Practice

angle control channel has been selected as an example and finally coded inside the

application.

 General Application Specification

The application ought to demonstrate whether it is possible to use IMA philosophy to

control an aircraft. The pitch angle control channel was selected as a sample. The

application tests if it is possible to use two synchronized actuators deflecting an aircraft

elevator’s surfaces. A flight controller computes the position of the elevator on the

basics of flight parameters, pilot input, and implemented control procedures. The

application communicates with actuator controllers and units which collect data from

indicators via ADFX bus. Figure 3 shows an example of the distribution of the

application between hardware modules.

CPM1

R
U

T
_
A

P
P

2

Actuator

REU1 REU2

AFDX Switch1 AFDX Switch2

R
U

T
_
A

P
P

3

R
U

T
_

A
P

P
1

Actuator

Figure 3. Example application distribution scenario.

A part of the control application is executed on a CPM module. Two other parts are

allocated to two REUs. The REUs are directly connected to elevator actuators. The

control application modules communicate via AFDX.

 Control System Project

To fulfill the application requirements the following control system architecture was

proposed. The control application would be a Pitch Angle Control Application (PACA)

controlling two actuators (brushless motors) loaded externally (an elevator). Each

actuator is controlled by a separate cascade of controllers, as in fig. 4. The single

actuator control system includes an internal current control loop, a velocity control loop,

and a position control loop. The Flight Control Algorithm is a superior module that

generates the position demand signal for both actuator control subsystems. It collects

 Experimental Real-Time Arinc 653 Based Pitch Angle Control Application 145

signals from the aircraft simulator, pilot simulator and actuator. The real-time aircraft

simulator makes it possible to adjust the dynamics of the PACA to realistic values. It

reflects typical airliner behavior.

REU2_2

REU1_2CPM1_2

REU2_1

REU1_1CPM1_1

PIDpos err PID+
-

spd err torq dem

Motor

Controller

and Drive
Mcurrent

Gear

Box and

Sensors

motor spd

curr spd

Load

curr pos

pos dem spd dem+
-

Flight

Control

Algorithm

curr pos

Pilot

Aircraft curr pos

PIDpos err PID+
-

spd err torq dem

Motor

Controller

and Drive
Mcurrent

Gear

Box and

Sensors

motor spd

curr spd

Load

curr pos

spd dem+
-

curr pos

pos dem

curr pos

Figure 4. Pitch Angle Control System Architecture.

 Control Application Distribution Scenarios

One of the most important goals of reported research was to evaluate the quality of

distributed control applications, where some parts of the application are housed on

different devices. Therefore the Pitch Angle Control Application was developed with

the intention of distributing some of its parts to separate hardware modules. Figure 4

shows the possible control application distribution variants proposed by the

demonstrator’s developers. In the first variant there are CPM1_2 + REU1_2 + REU2_2

units, the Pilot, Aircraft, Flight Control Algorithm, and two position controllers housed

on the CPM module, whereas control algorithms controlling the rate of the elevator are

housed on separate REUs (compare fig. 4). In the second variant (CPM1_1 + REU1_1 +

REU2_1), the CPM module executes the superior part of the control system (Pilot,

Flight Control Algorithm, and Aircraft), with the position and velocity controllers

housed on REUs (compare fig. 4).

 Control Application Configuration Assumptions

Bearing in mind application specification and the likelihood of different allocation

scenarios of the control application components, there are following detailed

assumptions regarding the developed application taken:

• The position controller must be movable. It should be possible to install it both on

CPM or REU hardware modules. Therefore it should belong to a separate ARINC

653 partition.

146 From Requirements to Software: Research and Practice

• All data packages sent between partitions should be in accordance with ARINC

664P7 [3]. This way, the partition application does not have to be changed even if

some of the partitions will be moved to other hardware units. ARINC 664P7

messages will be ready to be sent via the AFDX network.

• Some verification procedures should be built into the application software. They

should provide information about the quality of control system and the soundness

of the system structure.

• The application should be developed according to ARINC 653P1-2 for 2 target

operating systems: VxWorks 653 [17, 18, 19] and PikeOS [10, 11, 12].

 Pitch Angle Control Application

The PACA software consist of both controllers and real-time simulators of the hardware

units which were finally replaced by real devices. Figure 5 includes this structure.

Figure 5 also depicts the PACA structure from figure 4 in a schema based on ARINC

653. The second variant of module allocation has been chosen (CPM1_1 + REU1_1 +

REU2_1; compare sec. 4.3 and fig. 4). The application is hosted on three DME units:

one CPM and two REUs. P1 partition of CPM1 module includes some real-time

simulators of Pilot and Aircraft. It also includes a Flight Control Algorithm (FCA)

block that collects signals from Pilot, Aircraft and actuator modules and produces the

desired pitch angle signals for controllers. The last module built into the CPM1’s P1

partition is an Error Estimator. It makes it possible to monitor both communication

channels and the quality of control system during the system run-time. The Error

Estimator, Pilot, Aircraft and FCA modules are separate real-time tasks.

The first (P1) REUs’ partitions include the position controller algorithms (CPx1

and CPx2), running as a separate real-time task. The second (P2) partitions of REUs

include the velocity controller modules joined with actuators attached to the first

(CVx1+Actu1) and second (CVx2+Actu2) control loops.

For the intra-partition communication ARINC 653 blackboards were applied,

whereas the inter-partition communication is based on ARINC 653 sampling ports and

channels (compare section 3.3). Figure 5 includes both ARINC 653 port names and

communication channels defined. The port names are the only reference to the

application communication interface. The same port names exist in the application

configuration record and this makes it possible to connect these ports by means of the

channels.

The Pitch Angle Control Application was developed to fulfill the timing constraints

shown in fig. 6. Major application frame and partition windows were defined according

to ARINC 653 and encoded in the application’s XML configuration file. Table 1

includes all the PACA tasks’ ARINC 653 real-time parameters. These timing

constraints originate from control engineering needs. The CPM’s major time frame

includes a set of regions dedicated to applications which are executed on CPM1 apart

from P1 partition. The HARD attribute attached to each of the real-time tasks instructs

the ARINC 653 Health Monitor (which is built into the operating system structure) that

if any task misses its deadline, the core operating system must be informed about it.

This in consequence, imposes the operating system to take an appropriate action. The

 Experimental Real-Time Arinc 653 Based Pitch Angle Control Application 147

Health Monitor procedures may even reload the whole partition that signals the missing

timing constraints event.

CPx2

FCA

Pilot

Aircraft

PS

th_q

Error Estimator

1 4 7

VFx_ED1

PD1

ERR

P1
P2

CPx1

8 9 10

PD1

VFx_ED1

VDx1

CVx1 Actu1

14 15

Vx1

VFx1

VFx_ED1

VDx1

P1

EC1

P1

11 12 13

PD2

VFx_ED2

CVx2 Actu2

VDx2

Vx2

VFx2

VFx_ED2

6

PD2

5

VFx_ED2

ERR

CPM1

CP2 CP3 CP8 CP9CP1

REU1

REU2

R13 R12

R23 R22

EC14 EC7

EC16 EC9

VFx_ED2

PD2

FVx_ED2

PD1

VFx_ED1

PD1

PD2

EC2 EC3

VFx_ED1

VFx_ED2

AFDX1

AFDX2

P2

LC6
LC5

EC13

PD2

VDx2

LC8
LC7

EC12

CP6 CP7

2 3

PD2

PD1

R14

EC15

VDx1

VDx1

EC11

VDx1

R24

EC17

VDx2

VDx2

VDx2

EC10

VDx2

16 17

CPM1 internal port names:

1: ERR_OUTPUT

2: VDx1_INPUT

3: VDx2_INPUT

4: VFx_ED1_INPUT

5: VFx_ED2_INPUT

6: PD2_OUTPUT

7: PD1_OUTPUT

CPM1 external channels:

EC1: CPM1:1 -> CP1

EC2: CP2 -> CPM1:4

EC3: CP3 -> CPM1:5

EC10: CP6 -> CPM1:2

EC11: CP7 -> CPM1:3

EC12: CPM1:6 -> CP8

EC13: CPM1:7 -> CP9

REU1 local channels:

LC5: P1:VDx1_OUTPUT

-> P2:VDx1_INPUT

LC6: P2:VFx_ED1_OUTPUT

-> P1:VFx_ED1_INPUT

REU2 local channels:

LC7: P1:VDx2_OUTPUT

-> P2:VDx2_INPUT

LC8: P2:VFx_ED2_OUTPUT

-> P1:VFx_ED2_INPUT

REU1 internal port names:

8: PD1_INPUT

9: VFx_ED1_INPUT

10: VDx1_OUTPUT

14: VDx1_INPUT

15: VFx_ED1_OUTPUT

REU2 internal port names:

11: PD2_INPUT

12: VFx_ED2_INPUT

13: VDx2_OUTPUT

16: VDx2_INPUT

17: VFx_ED2_OUTPUT

REU1 external channels:

EC7: REU1:15 -> R12

EC14: R13 -> REU1:8

EC15: REU1:10 -> R14

REU2 external channels:

EC9: REU2:17 -> R22

EC16: R23 -> REU2:11

EC17: REU1:13 -> R24

PITCH ANGLE CONTROL APPLICATION VARIANT II

Figure 5. Pitch Angle Control Application ARINC 653 based structure.

148 From Requirements to Software: Research and Practice

1
0 2 3 [ms]

Major cycle (frame)

Minor cycle

S
y
s
te

m

A
P

P
1

1
0 2 3

S
y
s
te

m

C
P

X
1

3 1
CPM1

REU1

Minor cycle

Major cycle

[ms]

C
P

V
x
1

+
 A

c
tu

1
1

F
C

A
 +

E
rr

o
r

E
s
ti
m

a
to

r

S
y
s
te

m

A
P

P
1

A
P

P
2

S
y
s
te

m

C
P

X
2

3 1

REU2

Minor cycle

Major cycle

[ms]

C
P

V
x
2

+
 A

c
tu

2
1

Figure 6. Pitch Angle Control System Partition Timing

 PACA Real-Time Analysis

As it was mentioned before, the PACA timing restrictions were forced by control

engineers which specified the system. P1 and P2 partitions at REUs acquired 2 ms time

frames for their computations and are activated every 5 ms. This timing constraints

guarantee sufficient frequency (200Hz) of PID algorithm repetition which in

consequence guarantees the sufficient quality of control. P1 partition on CPM1 module

is 4 times “slower” than others. To authors knowledge algorithms computed in this

partition may produce the results in such rate without any effect on the control system

quality. This makes it possible to save some computational time for other application

that will be installed on the same hardware module.

All of algorithms applied in the PACA are controllers or simplified numerical

procedures which solve some differential equations. During the system development the

worst case computation time analysis for each of the algorithm was conducted [6, 7]. It

was proved and experimentally checked that the algorithms can meet the

aforementioned timing constraints.

The real-time task parameters of all of the PACA is depicted in tab. 1. The local

real-time tasks priorities (which were defined within the partitions) reflect the order of

the computations the task should follow. This approach is essential especially in P1

partition. It is expected that the Pilot and Aircraft real-time tasks should finish their

computations and produce their results before the FCA task starts.

All the communication mechanisms applied in the PACA are both shared variables

and monitors. This solves the mutual exclusion problem. The shared variable access (at

the operating system level) is conducted according to the priority inheritance protocol

 Experimental Real-Time Arinc 653 Based Pitch Angle Control Application 149

[6, 7]. It is easily to notice that the developed PACA communication structure prevents

form the deadlock phenomena, too.

Table 1. PACA ARINC 653 Real-Time Tasks Parameters

Tasks

Real-Time Tasks Parameters

Stack Size
Base

Priority

Period

[ms]

Time

Capacity

[ms]

Deadline

Pilot 4096 120 20 2 HARD

Aircraft 4096 119 20 4 HARD

FCA 4096 118 20 2 HARD

ERROR ESTIM. 4096 117 20 2 HARD

CPx1 4096 110 5 2 HARD

CPx2 4096 110 5 2 HARD

VPx1 4096 109 5 1 HARD

VPx2 4096 109 5 1 HARD

Actu1 4096 108 5 1 HARD

Actu2 4096 108 5 1 HARD

 Built-in Self-Testing Procedures

According to application specification, the PACA should provide a set of test

procedures informing the user about the quality of the system before or during runtime.

Therefore the following extensions of the basic PACA structure depicted in fig. 4 were

applied.

• A separate error (ERR) port was included in the CPM1s’ P1 partition structure.

• A new Error Estimator real-time task was introduced in the CPM1s’ P1 partition.

• It has been decided that the quality of the PACA’s subsystem service would be run

simultaneously with the control procedures.

• The quality of service procedures has been divided into two subsystems:

o The channel connection detector permanently monitors the channels of the

system and indicates whether all links are properly connected. This

subsystem guarantees that all system components send and receive data

from the proper ports and software modules. The channel connection

detector checks whether all channels are configured according to the

assumed structure. During the runtime of the application, apart from

control application data, a separate set of values is sent via the channels.

Some additional procedures included in application control blocks make it

possible to detect whether the application’s ports receive data from the

assumed sources. The detector also makes it possible to reveal data

transmission faults. It produces a bit word, where each bit value means the

correctness of the related channel. If the bit value equals 0 the channel

works properly. If not, the channel is badly established or the function

block connected to the channel produces incorrectly formulated data

packages.

150 From Requirements to Software: Research and Practice

o The control system error detector signals to the system operator that the

quality of control is below the assumed acceptable level. It may reveal

some problems with communication or may suggest that the control

system’s parameters should be refined. Each single actuator control

system is monitored by a separate control procedure built into the Error

Estimator block. This procedure collects all the possible signals from the

PACA modules and assesses the quality of control by: 1) detection of the

actuator’s angular velocity oscillations, 2) signalization of the elevator’s

position error that exceeds the assumed threshold value.

Finally, the control system error detector produces 2 major and 4 minor values. The

major values describe the quality of control of the appropriate actuator. In general, if

they both have the value of 0, both control loops work correctly. If they have values

between 1 and 3, they include the error code of the monitored control loop. Table 2

includes the error codes’ interpretation.

Table 2. Error codes signalized by PACA diagnostic system
Error Code Error Code Interpretation

0 Control system is working correctly
1 Deflection velocity oscillations in occurs

2 Tracking error occurs

3 Both tracking error and control system oscillations occurs

 PACA Tests

The complete PACA system was finally integrated with new DME IMA2G modules

developed within SCARLETT program. Figure 7 shows the mapping between the

partitions and new hardware DME modules.

P1 - GEA CPM GEA/TTTech ARINC

664 Switch

P1, P2
- GEA/NATUREN REU1

GEA/TTTech ARINC

664 Switch

P1, P2
- GEA/NATUREN REU2

GEA/NATUREN ACTUATOR

Figure 7. DME modules developed where prototype Pitch Angle Control Application was integrated with.

 Experimental Real-Time Arinc 653 Based Pitch Angle Control Application 151

P1 partition software module is integrated with the CPM (Core Processing Module)

developer by General Electric Aviation – GEA. REUs’ P1 and P2 partitions software is

being integrated with REUs (Remote Electronic Unit) modules developed by GEA and

NATUREN. ARINC 664-compatible switches developed by TTTech and GEA were

responsible for inter-module communication. One of the REU modules was being

integrated with a laboratory set including a brushless motor, a load and a power

controller developed by NATUREN. The integrated system (the demonstrator) was

being applied to the evaluation of both hardware and software module prototypes.

There were three groups of tests conducted with PACA application. The first group

of tests assessed the application from a control engineering point of view. The second

group of tests covered execution of built-in self-test procedures of the PACA. The third

group of test included the application of VxWorks 653 analysis tools for PACA timing

and communication evaluation.

A control engineering-based application evaluation was conducted as follows, the

application’s goal was to perform in an AFDX environment and to control actuators

using data incoming from the network. To guarantee more realistic test conditions, the

actuator controller’s software was put into a simulated flight control environment. A

real-time aircraft simulator was used to obtain realistic values from the application. It

also produced a reference signal for the Flight Control Algorithm module (fig. 4 and 5).

Figure 8 includes the result of the pitch control system evaluation. A position

tracking by the motor as well as its velocity were examined during experiments. As a

result, it was stated that the system met the typical requirements of position tracking

control systems. The system latency was below 40 [ms]. Both CPM and REU hardware

module were able to effectively serve the software applications loaded on them.

Figure 8. Position and velocity tracking tests of prototype Pitch Angle Control Application.

A built-in self-test subsystem evaluation was performed as follows, both the

channel connection detector subsystem and control system error detector were tested in

detail during long-term tests of the PACA. All possible channel malfunctions were

simulated and properly detected. Similarly, a low quality (from the control engineering

152 From Requirements to Software: Research and Practice

point of view) PACA was executed. The control system error detector successfully

signaled the lower quality control signals.

A VxWorks 653 analysis tools-based system evaluation was conducted as follows,

during the real-time PACA execution, the a System Viewer toolset was applied to

collect standard timing and communication events that occurred during the monitoring

session. Thorough analysis of the System Viewer data made it possible to confirm that

the timing and communication requirements were fulfilled.

The final report of SCARLETT program concluded that the hardware modules

developed within the program could be potentially applied as a control system

applications platform.

5. Conclusions

An experimental hard real-time avionic control and ARINC 653-compatible application

development was a main subject of the paper. The paper mentions the general objectives

of Distributed Modular Electronics and specification ARINC 653. The main part of the

paper includes a report of the PACA development and evaluation. It covers system

specification and the most important project development perspectives: control system

structure, ARINC 653-based application structure, real-time timing parameters, and

built-in self-testing procedures.

The experimental PACA application has been successfully integrated with a new

DME modules. It proved that hard real-time control application can be effectively

loaded into new DME modules. Currently the DME modules are tested and certified for

the use in a future aircrafts. The IMA concept is going to be introduced in broaden

aircraft developers.

The future author’s work will concentrate on the development and evaluation of

new self-testing procedures for ARINC 664/653 based applications, mentioned in

section 4.7. The research done during the software tests as well as the experience

exchanged between the researches and engineers showed that the ARINC 653 software

should be equipped with some more effective software modules which would supervise

the control system state and modify the system behavior during the malfunction

detection.

Acknowledgments

Research reported in the paper is funded by SCARLETT 7th European Framework Project, Grant Agreement

No. FP7-AAT-2007-RTD-1-211439. Some of hardware components used in the research published within this

paper were financed by the European Union Operational Program - Development of Eastern Poland, Project

No. POPW.01.03.00-18-012/09. Ralph McGaw assisted in proofreading the English version of this text.

 Experimental Real-Time Arinc 653 Based Pitch Angle Control Application 153

References

[1] ARINC 429: Mark 33 Digital Information Transfer Systems (DITS), 1996.
[2] AFDX: The Next Generation Interconnect for Avionics Subsystems, Avionics Magazine Tech. Report,

2008.

[3] Aircraft Data Network Part 7 - Avionics Full Duplex Switched Ethernet (AFDX) Network, ARINC
Specification 664p7 2005.

[4] Avionics Application Software Standard Interface Part 1-2, ARINC Specification 653p1-2, 2005.

[5] P. Bieber, E. Noulard, C. Pagetti, T. Planche, F. Vialard, Preliminary Design of Future Reconfigurable
IMA Platforms, ACM SIGBED Review - Special Issue on the 2nd International Workshop on Adaptive

and Reconfigurable Embedded Systems (APRES'09), Volume 6 Issue 3, October 2009.

[6] A. Burns, A. Wellings, Real-Time Systems and Programming Languages, Addison Wesley, 2001.
[7] G. Buttazzo, Hard Real-Time Computing Systems – Predictable Scheduling Algorithms and

Applications, Kluwer, 2002

[8] B. Dołega, G. Kopecki, Fault Detection and Isolation in Attitude and Heading Reference Systems For
Fly-By-Wire Control System For General Aviation Aircraft, SAE Paper, No. 2006-01-2415, 2006.

[9] P. Parkinson, L. Kinnan, Safety-Critical Software Development for Integrated Modular Avionics, Wind

River White Paper, 2007.
[10] PikeOS Fundamentals, Sysgo AG, 2009.

[11] PikeOS Tutorials, Sysgo AG, 2009.

[12] PikeOS Personality Manual:APEX, Sysgo, 2009.
[13] J. W. Ramsey, Integrated Modular Avionics: Less is More Approaches to IMA will save weight,

improve reliability of A380 and B787 avionics, Avionics Magazine, 2007.

http://www.aviationtoday.com/av/categories/commercial/8420.html.
[14] T. Rogalski, A Conception of Voice Guided General Aviation Aircraft, Aircraft Engineering And

Aerospace Technology, An International Journal, Vol 80 No. 6 2008, Emerald Group Publishing

Limited, 2008.
[15] T. Rogalski, S.Samolej, A. Tomczyk: ARINC 653 Based Time-Critical Application for European

SCARLETT Project, AIAA Guidance, Navigation, and Control Conference, 08 - 11 August 2011,
Portland, Oregon, USA, paper number: AIAA 2011-6684, available on www.aiaa.org website.

[16] S. Samolej, A. Tomczyk, J. Pieniążek, G. Kopecki, T. Rogalski, L. Rolka, VxWorks 653 based Pitch

Control System Prototype, Development Methods and Applications of Real-Time Systems, L. Trybus, S.
Samolej eds., WKŁ 2010, (in. Polish).

[17] VxWorks 653 Configuration and Build Guide 2.2, Wind River Systems, Inc. 2007.

[18] VxWorks 653 Configuration and Build Reference, 2.2, Wind River Systems, Inc. 2007.
[19] VxWorks 653 Programmer's Guide 2.2, Wind River Systems, Inc. 2007.

[20] http://www.scarlettproject.eu

Chapter 10

Improving Dependability of Embedded

Software Systems using Fault Bypass

Modeling (FBM)

1. Introduction

Embedded software plays today a very significant role in our daily lives. Everything

from our mobile devices, telecommunications infrastructure, satellites to home

appliances and automotive products depend heavily on the embedded software to

provide functionality and services. Over the last two decades, there has been an

enormous increase in the complexity of embedded software, shorter innovation cycle

times, while the demands for their reliability and dependability have anything but grown

[1].

Due to requirements of real time behavior and stringent demands for quality and

dependability, embedded software are much more complex than their counterparts in IT

applications or desktop software due to real-time and interface constraints [2]. Also

given that the late defect correction costs are higher in embedded software development

and testing of software after code completion costs about 30-50% of all resources [2],

verification and validation holds special significance in this domain. Model driven or

model based development (MBD) is now widely adopted within the domains of

embedded software/systems development. A good overview on embedded software

development and model based development therein can be found in [3], [4], [5], while

[2] provides important facts, figures and the expected future for embedded software.

The problem and challenges related to verification and validation of models,

specifically how to verify, validate, and test the behavioral/implementation models that

are used for code generation is also well recognized within the research community of

model driven engineering [6]. The predominant form of testing within embedded

software using MBD is done using test cases and test scenarios. Model based testing

(MBT) attempts to use data models to generate tests where data models intend to

capture the requirements and input configurations [7]. While test automation and MBT

provide considerable reduction in cost of test generation, the importance of real-time

issue and the need for testing using continuous signals calls for reactive or closed loop

testing.

Closed loop testing offers many advantages for testing systems which depend or

interact closely with their environment. By modeling the environment and letting the

system under test interact with its environment through controlled interfaces - provides

156 From Requirements to Software: Research and Practice

the possibility of reactive testing, identification/generation of multiple system-

environment test cases/scenarios automatically, and tests the system for its real time

characteristics.

Fault injection techniques can further enhance the effectiveness of closed loop

testing and thus help in evaluating and increasing the dependability of a system in its

early stage of development, but injecting faults into a system (in a closed loop

configuration) may lead to unrealistic system behavior, which is hence unreliable for

making analysis or testing hypothesis. The problem occurs mainly due to dependencies

between the system and its environment and feedback loops between them. In this paper

we highlight the problem and discuss how a framework referred as fault bypass

modeling can be used as a potential solution to this problem.

2. Related work

The idea of fault bypass modeling presented here is introduced by the authors of this

paper in [8], with a case study using a behavioral model of an anti-lock braking system

in Simulink. In this paper we highlight the need of closed loop testing and evaluate the

applicability of the fault bypass principle to a case of simulating an autonomous vehicle.

Using fault injection techniques for dependability evaluation of

behavioral/functional models are on the rise, Svenningsson et al. [9] introduce the tool

called MODIFI which can be used to apply fault injection methodology on

functional/behavioral models in Simulink. The tool is capable of injecting single or

multiple faults into the signals of a given system to evaluate the fault propagation

properties and analyze the effectiveness of fault tolerance mechanism of the system

under test. But as described in our earlier work [8], using such tools in closed loop

mode needs careful consideration to fault bypass principle to ensure that the system

output is realistic and reliable. Such a modelling is important even for other domains,

e.g. a measurement system or software modelling in general [10, 11].

Trawczynski et al. [12] presented an approach for modelling software systems in

cars using closed loops in the context of security engineering. Their approach provides

another example from a similar domain.

 Need for closed loop testing 2.1.

The main form of traditional software testing is open loop testing using test case and

scenarios. But in a number of industrial domains and types of applications where the

program/system under test is non-deterministic or where the behavior of given

function/system depends on its operational environment – open loop testing is not an

effective approach. In such cases the problem of test case generation even using MBT

or automated test generation tools is much more complex than for deterministic type of

applications [13].

Stockmann et al. [14] document the need for closed loop testing in the automotive

industry. Focusing on the domain of electric vehicles and testing electronic control units

(ECUs), the authors propose a methodology and tool chain for simulating virtual ECUs

to enable functional testing under different conditions. The requirement of using closed

 Improving Dependability of Embedded Software Systems using Fault Bypass Modeling (FBM) 157

loop testing for testing model based development in automotive domain due to real time

issues behavior and need for using continuously changing signals is also expressed in

[15]. The need for testing in the virtual space and thus, in a closed loop configuration

due to advancements in autonomous driving, vehicle to infrastructure, and vehicle to

vehicle communication is further established in [16]. Further need for such testing in

automotive domain is highlighted in study by Matinnejad et al. [17] that explored the

Model-In-Loop testing of highly configurable continuous controllers.

The problem of non-deterministic factors of testing and the need for closed loop

testing in the area of medical devices is explained and highlighted in [13]. The authors

refer to implantable devices increasing complexity as a factor leading to large amount of

device recalls. The safety critical nature of such systems calls for more rigorous testing,

one way of increasing test coverage is by using physically relevant model for test case

generation for such devices using a closed loop testing environment. For example in

pacemakers the capability and effectiveness of the approach is demonstrated by the

system’s ability to test for common and complex heart conditions for different

pacemaker models.

Figure 1. Simulated heart and pacemaker model in closed loop configuration as presented in [13].

A common approach to test systems with human elements in closed loop is to

couple the human subject to the simulated system. Using virtual human models as a

cheaper alternative is an area of active research [18]. Thus, closed loop testing is also

important in areas with a man-machine interface, which constitutes a large part of day-

to-day products with embedded software.

 Fault Injection 2.2.

Fault injection has been used with good results for verification of dependability

attributes of hardware and software systems [19]. Fault injection is widely used to

identify bottlenecks related to dependability, study the behavior of a system under faulty

operating conditions, and examining the coverage of fault tolerance or error detection

and recovery mechanisms within software systems.

For applications, which are safety, mission, or business critical, dependability

evaluation is especially important activity. Fault injection techniques have been studied

much and used for safety critical applications development. SCADE or Safety-Critical

Application Development Environment is a modeling language developed to simulate

hardware failure scenarios. SCADE have been used in projects such as ESACS and

ISAAC for identification of fault combinations leading to safety case violations. A plug-

in called FISCADE [20] have also been developed for SCADE language for introducing

faults into using the SCADE simulator.

158 From Requirements to Software: Research and Practice

3. Improving closed loop testing using fault injection

As described in 2.1, there is a high need for using closed loop testing for a number of

domains and applications. Closed loop testing can be achieved by developing/modeling

the environment, with which the system interacts, and simulating the system and

environment coupled through interfaces in a virtual environment. Using MBD and MBT

approaches in conjunction can be used to generate tests for system in closed loop

configuration which works well under normal (specified) working conditions.

But in order to achieve dependability evaluation of a system; for example running

fault based scenarios, we need to go one step further to the closed loop testing. This

could be easily done by injecting faults into the system. Using such approach many

scenarios can be created, for instance a system with inputs from n sensors may run

scenarios with individual failure of x (0 < 𝑥 < 𝑛) sensors input and their combinations.

Different types of sensor/input failure modes could be modeled and so does the failure

related to reading parameters and system dependencies onto other system which

simulates reading, writing or memory errors. All these fault operating conditions can be

used to identify failure modes under which system output is unacceptable and test

cases/scenarios generated to ensure that final implementation code have error handling

or tolerance capabilities to avoid such scenarios.

Thus by coupling fault injection techniques with close loop testing, the efficiency

and effectiveness of testing real-time systems with non-deterministic or environmental

dependent properties can be enhanced significantly. Model based development and

closed loop configuration allows for running the system automatically against a large

number of normal and fault scenarios, which would not be possible in an open loop

configuration or by using manually crafted test cases.

But the main challenge in using fault injection in a close loop configuration is to

differentiate between correct system’s behaviors from the system failure under fault

mode. The problem is described in the next section using a simple case study, while

detailed description using a behavioral Simulink model is also available in [21].

4. Case study: problem description and proposed solution

In this section we describe the challenge when using fault injection in a closed loop

configuration. We use the miniature vehicle and its environment model as described in

[16].

The implementation of system-environment model for the autonomous miniature

car and its environment is presented in Figure 2. The modules named monitor,

lanedetector and driver are the parts constituting the system within the car, while the

vehicle, camgen, and irus forms the simulation for the environment model. The

simulation can take inputs from a scenario modeling GUI, which gives flexibility of

designing and running test scenarios.

 Improving Dependability of Embedded Software Systems using Fault Bypass Modeling (FBM) 159

Figure 2. Representation of model-based system-environment model capable of simulating vehicle-
environment model in virtual space, as presented in [16].

When simulating the autonomous miniature car in the virtual environment, the

lanedetectorM module takes input from environment simulator module CamGen, which

is producing virtual image data similar to a camera input during on-road conditions.

Using data from CamGen and controlling commands provided by the user in the virtual

environment or using the test scenario model, the driverM module determines the

current vehicle position. The driverM module also calculates the demand velocity (Vd)

and the desired steering wheel angle (𝜃𝑑) to be applied using input from lanedetectorM

and driving instructions.

Figure 3. Miniature vehicle running in open-loop condition.

Figure 4. Vehicle in the virtual simulation mode under closed loop operation.

The output of the driver module is used to control the vehicle movement in case of

on-track mode, or it is fed back to the vehicleS module in the simulation mode to

calculate the new vehicle position using linear bicycle model. The new position from

160 From Requirements to Software: Research and Practice

the vehicleS module is then used by CamGen to generate new image data and irus to re-

calculate the obstacles distance to be used by lanedetectorM and driverM modules.

Figure 3 and Figure 4 represent the working modes in on-track and virtual simulation

mode.

 Injecting fault into the system 4.1.

Now we consider a simple scenario, where we simulate how the vehicle would act

in the case of a faulty speed sensor (sensor output is zero). In the real vehicle on the

track, even though the speed sensor has failed at t=t0, we can reasonably assume that

vehicle would continue in motion with its initial velocity v0 and process the observed

camera images to navigate the lane according to lanedetectorM input. Although due to

an assumed failure in the vehicle speed sensor, the vehicle speed would be assumed by

driverM (system) as zero and thus demand maximum speed resulting in full throttle

leading to vehicle accelerating and continuing operation in full speed mode.

Figure 5. Vehicle in the virtual test environment mode with fault injected.

If we simulate the same condition in a virtual test environment, the fault condition

of vehicle speed 0 would be interpreted in the manner as described above (like in real

case) by the vehicleS model to simulate a condition with full acceleration demand. The

wrong signal (zero vehicle speed) will make incorrect new vehicle speed and thus also

the distance traveled from the point of fault injection leading to faulty position

interpretation by CamGen and thus the vehicle speed and trajectory in simulated case

will not reflect the actual behavior and thus unreliable to make analysis.

Using a simplified 1D model, the current velocity and distance can be calculated

using Newton’s law of motion,

𝑣 = 𝑣0 + 𝑎𝑡

𝑆 = 𝑆0 + 𝑣0𝑡 +
1

2
𝑎𝑡2

In case of the actual vehicle on the track, due to the faulty vehicle velocity input (v

= 0 m/s) the driverM module will demand maximum acceleration (assumed here

𝑎𝑚𝑎𝑥 = 5 𝑚/𝑠2), but the initial velocity irrespective of the state (working or faulty) will

be 𝑣0 (assumed to be 40m/s below) will follow the laws of motion. Also the

observations from camera unit will be normal and thus the vehicle would be able to

navigate the obstacles and follow the lane.

 Improving Dependability of Embedded Software Systems using Fault Bypass Modeling (FBM) 161

Fig 6: Velocity and distance traveled (actual and simulated).

While in case of the virtual test environment, the initial velocity will be wrongly

taken to be 0 and although the driverM module will demand similar condition of

maximum acceleration, in this case the simulated velocity and distance traveled would

be wrongly calculated. And since in the simulated case the module CamGen is used

instead of real camera, the generated image based on wrong position data from the

vehicle module will result in faulty image generation, and hence the vehicle would not

navigate or follow lane correctly. Fig 6 shows the difference between velocity and

distance in actual and simulated case.

Such inconsistencies occur due to dependencies and superficial feedback loops

between the system and its environment where a system state/signal is used to

calculate/control a natural parameter which in normal circumstances would not depend

on that signal/ state of the system [21]. In the given case study, the problem occurs due

to the virtual vehicle dynamics simulator (vehicleS) that will take wrong input of

current velocity (as zero) in the fault scenario, which is used to calculate the new

velocity and new vehicle position, which is further used to generate the virtual image

data by CamGen and thus producing incorrect simulated outcome.

Figure 7. Vehicle simulation closed loop testing using FBM.

The solution for such problems is easily achieved by using the principle of fault

bypass modeling where the part of the signal or its derivative, which is used to

calculate/control an environment parameter (in this case correct initial velocity) is made

162 From Requirements to Software: Research and Practice

fault free to break the unrealistic feedback loop. In the above mentioned case when

FBM principle is applied, the initial velocity of moving vehicle is a parameter

independent of the injected fault. Thus when we simulate the given fault scenario, fault

(v=0) needs to be provided to the driver module, but the fault free current value of

initial velocity should be passed by to the simulated environment (vehicleS module) so

that the new velocity and position data is correctly generated and thus the output of

CamGen (generating the virtual image data) as well. The implementation of FBM in the

given case is represented in Figure 7.

This is a simple example but for many embedded systems that require closed loop

testing, transient properties are important or even critical. Consider testing if the vehicle

stops safely under a scenario of failed brakes or how the pacemaker or some

implantable device would react to an intermittent discharge from the battery. Using the

fault injection methodology to test for these fault scenarios under closed loop strictly

depends on ensuring that the system-environment simulated output is reliable and

reflects the realistic behavior of system under test. Thus, the FBM principle outlined

here can be useful for closed loop testing of dependability of non-deterministic systems

and systems with high dependence on their environment.

5. Conclusion

We established that there is significant need for using closed loop testing of embedded

software systems in many domains and applications. It is also discussed that fault

injection can be used to enhance the effectiveness of closed loop testing by making it

possible to do dependability evaluation of the system in early development stages. But

injecting faults into closed loop configurations can generate outputs that are unreliable

and unrealistic. To overcome this problem, a framework referred to as fault bypass

modeling is demonstrated with a simple case study. Although the example discussed

here is very simple, the use of closed loop testing is most often needed for testing of

safety critical applications where dependability and reliability is of utmost importance;

thus, FBM can prove to be a useful tool in ensuring dependability of embedded systems.

Acknowledgments

The work presented here has been funded by Vinnova and Volvo Cars jointly under the

FFI programme (VISEE, Project No: DIARIENR: 2011-04438).

References

[1] P. Liggesmeyer and M. Trapp, "Trends in embedded software engineering," Software, IEEE, vol. 26, pp.

19-25, 2009.

[2] C. Ebert and C. Jones, "Embedded software: Facts, figures, and future," Computer, pp. 42-52, 2009.
[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, "Model-integrated development of embedded

software," Proceedings of the IEEE, vol. 91, pp. 145-164, 2003.

 Improving Dependability of Embedded Software Systems using Fault Bypass Modeling (FBM) 163

[4] B. Graaf, M. Lormans, and H. Toetenel, "Embedded software engineering: the state of the practice,"
Software, IEEE, vol. 20, pp. 61-69, 2003.

[5] G. Buttazzo, "Research trends in real-time computing for embedded systems," ACM SIGBED Review,

vol. 3, pp. 1-10, 2006.
[6] R. Van Der Straeten, T. Mens, and S. Van Baelen, "Challenges in model-driven software engineering,"

in Models in Software Engineering, ed: Springer, 2009, pp. 35-47.

[7] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M. Lott, G. C. Patton, et al., "Model-based testing in
practice," in Proceedings of the 21st international conference on Software engineering, 1999,

pp. 285-294.

[8] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, "Improving Fault Injection in
Automotive Model Based Development using Fault Bypass Modeling," in GI-Jahrestagung, 2013, pp.

2577-2591.

[9] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, MODIFI: a MODel-implemented fault
injection tool: Springer, 2010.

[10] L. Kuzniarz and M. Staron, "On Practical Usage of Stereotypes in UML-Based Software

Development," in Forum on Design and Specification Languages, Marseille, 2002, pp. 262-270.
[11] M. Staron and W. Meding, "Using Models to Develop Measurement Systems: A Method and Its

Industrial Use," presented at the Software Process and Product Measurement, Amsterdam, NL, 2009.

[12] D. Trawczynski, J. Zalewski, and J. Sosnowski, "Design of Reactive Security Mechanisms in Time-
Triggered Embedded Systems," SAE International Journal of Passenger Cars-Electronic and Electrical

Systems, vol. 7, pp. 527-535, 2014.

[13] Z. Jiang, M. Pajic, and R. Mangharam, "Model-based closed-loop testing of implantable pacemakers,"
in Proceedings of the 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems,

2011, pp. 131-140.

[14] L. Stockmann, D. Holler, and D. Spenneberg, "Early simulation and testing of virtual ECUs for electric
vehicles," in International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS26), 2012.

[15] E. Bringmann and A. Kramer, "Model-based testing of automotive systems," in Software Testing,

Verification, and Validation, 2008 1st International Conference on, 2008, pp. 485-493.
[16] C. Berger, M. Chaudron, R. Heldal, O. Landsiedel, and E. M. Schiller, "Model-based, composable

simulation for the development of autonomous miniature vehicles," in Proceedings of the Symposium

on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, 2013, p. 17.
[17] Matinnejad, Reza, et al. "MiL testing of highly configurable continuous controllers: scalable search

using surrogate models." Proceedings of the 29th ACM/IEEE international conference on Automated

software engineering. ACM, 2014.
[18] W. F. Van Der Vegte and I. Horváth, "Achieving closed-loop control simulation of human-artefact

interaction: a comparative review," Modelling and Simulation in Engineering, vol. 2011, p. 24, 2011.

[19] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, et al., "Fault injection for
dependability validation: A methodology and some applications," Software Engineering, IEEE

Transactions on, vol. 16, pp. 166-182, 1990.

[20] J. Vinter, L. Bromander, P. Raistrick, and H. Edler, "Fiscade-a fault injection tool for scade models," in
Automotive Electronics, 2007 3rd Institution of Engineering and Technology Conference on, 2007,

pp. 1-9.

[21] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner, "Increasing efficiency of iso
26262 verification and validation by combining fault injection and mutation testing with model based

development," in 8th International Joint Conference on Software Technologies-ICSOFT-EA, Reykjavík,

Iceland, July 2013, 2013, pp. 251-257.

Chapter 11

From Academic Project to Production

Software Based on Java Web-tier CMS

Application

1. Introduction

The Content Management System (CMS) described in this article is a content manage-

ment system based on Java and HTML technology, and is tailor designed for require-

ments of Lodz University of Technology (TUL) dealing with heavy load as a production

software, content creation, editorial workflow and publishing for TUL. First version of

the system was designed in 2005-2006 at doctoral studies and later on the author had to

treat it as legacy Struts application and continue improvement to obtain measurable

performance effects not using state-of-the-art Java adds on.

Web CMS system consists of frontend and backend. The front is what we see and

the backend is hidden within its architecture and logic to obtain functional and perfor-

mance purposes. This article shows a little behind the curtain of authors original CMS

project which emerged within 2005-2013. This CMS is multi-tierd application based on

web tier of Java Enterprise Edition (JEE) platform with Model View Controller (MVC)

framework, Java Server Pages (JSP), Java Standard Tag Library (JSTL), Expression-

Language (EL), Struts 1.2, Object Relational Mapping (ORM) Hibernate and MySql.

As far as the design rationale is concerned author has choosen this solution because

in 2005 it was hardly to find open source mature CMS solution which would fulfil re-

quirement of all Steakholdes. Author concentrates on functional solutions of multi hier-

archy, multi-domain operability in app, etc. and examples of performance gain practices

applied in web-tier CMS application of TUL changing the academic project into pro-

duction web aplication.

Some technical solutions cases are shown as examples to explain ways on how the

web app was improved from academic project to production software, scaled based on

own experiences on the research [1][2][3][4][5][6][7][8][9][10][11][12][13] and engi-

neering projects, and making at the same time practice, science and algorithms.

This web system was custom designed for demands of administation of Lodz Uni-

versity of Technology and was refactored to service the emerging increasing quantity of

incoming http traffic year by year becoming production software. In year 2006 the CMS

introduced decentralization of responsibility for the information which was put to the

web by administrative departments of Lodz University of Technology. Each administra-

tive department started operating its web content. There were multi hierarchy, multi-

166 From Requirements to Software: Research and Practice

domain operability, multi lang versions features of the system implemented in one ap-

plication context.

In 2010 quantity of visitors increased significantly and improvement of perfor-

mance was demanded. In on – peak traffic periods the http sessions were from 1k to 10k

per day. Rewriting code for decend performance and ability for scalability took consist-

ently till 2013. The refresh of front end was done simultaneously (front end was deliv-

ered by other vendor) and in may 2013 the new production and scalability ready web

app was deployed at www.p.lodz.pl. The system is ready for operation of 1 to 2k http

session at the same time with one server. Nowadays the monthly traffic for p.lodz.pl

domain in peak season is 300k http sessions per month what gives circa 1M clics on the

web per month.

2. Functional solutions

Functional solutions like multi hierarchy, multi-domain operability in app was imple-

mented because of the requirements of organization. For the first stage the development

of CMS project, the aspect of functionality was first priority. Thus the author concen-

trated on functionality required to operate the administration of Lodz Univeristy of

Technology. The so important aspect of performance was an add-on code refactor later

on in time.

2.1. To be smarter than infrastructure - multi-domain operability in app

Web-programming model for enterprises called the Java 2 Enterprise Edition (J2EE)

extened with architectural framework allowed to build multitierd, here 3-tiered e-

business applications.

Author used one of the MVC frameworks called Struts to operate HTTP request

[18]. HTTP requests from thin client are view events, Fig. 1, a logic operates the HTTP

request and responses through ActionClass and a controller , here ActionServlet directs

control to proper views (JSP pages). Detailed analisys of J2EE architecture and code

generation from model are described in authors doctoral dissertation [18].

Figure 1. Struts MVC flow of control schema.

Thin
client

JSP view

DBMS

Client tier Application
logic tier

Database

ActionForm
Bean

 …
…

struts-config.xml
Reads action
mappings

URL

Action
Class

Action
Servlet
controller

r

r

One instance per one web-
application

 From Academic Project to Production Software Based on Java Web-tier CMS Application 167

Struts 1.x which is used in mentioned CMS do not support multi-domain operabil-

ity that might operate many domains in one web context. Usually one instance per one

web-application.

The author implemented own logic for multi-domain operability in one web context

by adding additional flag “main_context” based on url decomposition in ActionServlet

container of Struts framework. The code in Listing 1 shows the idea.

Listing 1. Code example of multi-domain operation in one web context block in controller

if(request.getAttribute("main_context")==null){
 //--------------- next domain

 String domena=request.getServerName();

…
if((domena.endsWith("www.studyinlodz.edu.pl") ||

 domena.endsWith("studyinlodz.edu.pl"))){

 …//data context

 Menu m=impl.getDefaultLeafForDomainName(domena);

 if(m!=null){

 int numer=m.getId_kat();
 url="/studyinlodz,menu"+numer+",_index.htm";

 }else{

try{
re-

quest.getRequestDispatcher("/"+"domena_not_operable.htm").forward(req

uest,response);
 return;

 }catch(Exception ex){ log.debug(ex.toString());}}

 …
 try { super.process(request, response);} catch …

}}}

If server name contains domain checked then the data are being fetched to show in

the context of this domain. This might be implemented as Struts extension since most

Web-tier application frameworks lack this design pattern.

2.2. Multi hierarchy and multi language support

This solution is very flexible and usefull for multi hierarchy support for menu items.

The data is encoded with UTF-8 standard thus allowing for multilanguage content for

all domain context to be presented in one web context. Thus presenting polish, english

version, and Chinese, and russian, and Ukrainian.

The relational schema implies risk on how we collect the hierarchical data. One

mistake in the algorithm and it may casue the jam problem. Then only helps the

memory dump of the thread with “kill -3 javapid”, detailed analysis of the dump, debug

and fixation of code.

168 From Requirements to Software: Research and Practice

Figure 2. ERD schema of self referencing menu table

2.3. Decentralization of operation of CMS by administrative staff of TUL

The Access Control Lists (ACL) for the CMS allowed for decentralization of operation

of CMS. Using a combination of ACLs, permissions, and roles, CMS provides methods

for setting and restricting the access available to CMS users.

That means that each organizational unit is able to operate its content by themselves.

This feature was deployed in 2007 at the Lodz University of Technology. The remain-

ing functionality is as follows:

• Browser-based interface,

• WYSIWYG editing tool,

• Role-based workflow,

• Permissions model.

2.4. Friendly URLs

The system has been based on url generation with keywords coming from title of the

article put to the CMS by the editor. The URL schema was modelled on the basis of the

“Google secrets…” [20]. The link structure is plain and wide.

Thanks to the Search Eengine Optimization (SEO) up till now the web page is easi-

ly found on top 10 position in Google. For example it keeps top Search Engine Results

Page (SERP) position for keyword “Politechniki”. There are circa 30k content urls.

3. Performance solutions

When quantity of visitors of web in 2010 increases the improvement of performance

was demanded. Many software designers and developers take the functionality as the

most important issue in a product while thinking of performance and scalability as add-

on features. Most of them believe that expensive hardware can fix the performance issue.

The same was with the authors CMS thus the web application must have evolved from

academic project and become production application.

To scale vertically (or scale up) means to add additional CPUs or memory to a sin-

gle computer [14]. To scale horizontally (or scale out) means to add more nodes to a

system, such as adding a new computer to a distributed software application. The author

idKat1

idKat

Menu

1..n

0..1

 From Academic Project to Production Software Based on Java Web-tier CMS Application 169

concentrates on architectural approach which touches mostly the aspect of performance

and at last the vertical scalablity.

3.1. Avoid the database - make cache

In order to improve performance of web-application we have to take into account many

aspects of web-application i.e. server side consists of many aspects in the topic of per-

formance. By analyzing the results obtained during this phase it is possible find bottle-

necks, memory leaks or performance problems related to database layer.

In this case the re-architecture and re-code the whole solution is demanded but it

cost money and time since obtaining performance is a time consuming work and error

prone.

The architecture of the system assumed in the academic project in 2006 (static data)

that all files are put to the database (because of the ease of db migration) and when http

requests comes they are taken again and again out of the database through all 3-tir lay-

ers of the web app. This caused big bottleneck when the http traffic increased. The re-

architecture and re-coding the whole solution was done in a way that the uploaded files

were not only saved to database but also into directory of web server (as static data) as

well. This solution concerning static data improved significantly performance.

In the web apps where every request processing action needs much data to process

the memory-caching comes into play. The method applied by the author in the CMS is

based on caching objects in AppContext and readdressing them to HttpRequest for

every request in the session for the presentation layer of guest user-agent - code list 3

ilustrates that. Avoiding the database to reduce the database reads is sometimes not

possible because of the dynamics of the system and e.g. some-point-critical e.g. finan-

cial data but in the author’s CMS caching and reloading the cache is appropriate solu-

tion for servicing data.

In the CMS the http data is cached where there are more frequent reads operation

than updates. The cached object is PrePrezenter.

Of course there are algorithms for invalidating and remaking the cache whenever

the update from the backend system is done. This solution improved the performance

significantly. Caching objects in memory when the system is initialized to avoid creat-

ing and fetching from persistent tier too many objects when running improves perfor-

mance.

Listing 2. In app cache making schema

 PrePrezenter pp1=null;

…
pp1=(PrePrezenter)context.getAttribute("preprezenter_spec_pl");

 if(pp1!=null&&pp1.getList().size()>0&&breloadnewsstronaglowna==false){

 Helper.setToRequest(request,pp1,"preprezenter_spec");
 }else{

 pp1=Helper.getDocumentsMainPage("stronaglownamain",…params);

 Helper.setToRequest(request,pp1,"preprezenter_spec");
context.setAttribute("preprezenter_spec_pl", pp1);

context.removeAttribute("reloadnewsstronaglowna")

//--
}

170 From Requirements to Software: Research and Practice

3.2. Switch from Hibernate to JDBC on front end requests

At the beginning of working on CMS the front end as well as back office were de-

signed with a Hibernate - an object-relational mapping framework for the Java lan-

guage. This framework mapped from Java classes to database tables (and from Java data

types to SQL data types) excellent but there was a little performance overhead. Author

decided to rewrite the code for front-end http actions to jdbc instead of hibernate leaving

the previous framework for a backend.

JDBC (Java DataBase Connectivity) access a database in much quicker time. Of

course there is source code overhead instead when writing JDBC logics.

3.2.1. Not leak resources

Close any JDBC instances that weren't explicitly closed during normal code path, not

'leaking' resources. The code listing 3 shows the details of explicit releasing resurces in

whatever path of execution of the code.

Listing 3. JDBC closing connection

 public List getRodzajeMenu(String lang) throws DAOSysException {
 Connection c = null;

 Statement stmt=null;

 ResultSet rs = null,rs2 = null;
 List ret = new ArrayList();

 javax.sql.DataSource ds;

 String f="select identyfikator_menu from dmenu m where
m.id_jezyka='"+lang+"'

group by m.identyfikator_menu order by m.kolejnosc";
 try {

 ds = DBAFactory.getDs();

 c = ds.getConnection();
 stmt = c.createStatement();

 rs=stmt.executeQuery(f);//

 while(rs.next()){
 ret.add(rs.getString("identyfikator_menu"));

 }

 if(rs!=null)rs.close();
 if(rs2!=null)rs2.close();

stmt.close();

c.close();
 } catch (SQLException se) {

 log.error("Error List "+se.toString());

 throw new DAOSysException("SQLException: " + se.getMessage());
 }finally { if (stmt != null) { try {

 stmt.close();

 } catch (SQLException sqlex) {}
 stmt = null;}

 if (c != null) {

 try {
 c.close();

 } catch (SQLException sqlex) {}

 c = null;
 }}

 return ret;

 }

http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Database

 From Academic Project to Production Software Based on Java Web-tier CMS Application 171

3.3. Coordination beetwen threads – “synchronized” keyword

“The primary tool for managing coordination between threads in Java programs is the

synchronized keyword. The synchronized keyword will force the scheduler to serialize

operations on the synchronized block. If many threads compete for the contended syn-

chronizations, and only one thread is executing a synchronized block, then any other

threads waiting to enter that block are stalled. If no other threads are available for

execution, then processors may sit idle. In such situations, more CPUs can help little on

performance. The JVM has to maintain a queue of threads waiting for that block (and

this queue must be synchronized across processors), which means more time spent in

the JVM or OS code and less time spent in your program code” [14][15]. To avoid the

hot lock problem, the author made synchronized blocks as short as possible – code list-

ing 4 - moving the thread safe code outside of the synchronized block.

Listing 4. Synchronized block

package config;
…

public class SessionCounter implements HttpSessionListener {

…
 if(se.getSession().isNew()==true){

synchronized(this){

 activeSessions++;
}

…

Paying attention to lock granularity is recommended. When we put the "synchro-

nized" keyword on a method, we are locking on "this" object implicitly making lesser

granularity. The entire object is locked when calling its method thus we decrease per-

formance and ability to scale. The same is the lock on static methods which means lock

on all instances of this class [15]. Programmer may choose the attitude from vast choice

of wait-free methods like compare and swap CAS or from java.util.concurrent.atomic

package.

3.4. Non-Blocking IO in Tomcat 6

Upgrade of server Tomcat 5 to Tomcat 6 which has embraced non-blocking IO was key

factor of better performance of the web application of Lodz University of Technology.

In non-blocking IO, a working thread will not binding to a dedicated request [15].

If one request is blocking due to any reasons, this thread will reuse by other requests, In

such way, Glassfish can handle thousands of concurrent users by only tens of working

threads.

3.5. Adding more Memory to the Server

Memory is an important resource for your applications. Enough memory is critical to

performance especially for database systems. More memory means larger shared

memory space and larger data buffers, to enable applications read more data from the

memory instead of disks.

172 From Requirements to Software: Research and Practice

“Too little memory will cause garbage collection to happened too frequently.

Enough memory will keep the JVM processing your business logic most of time, instead

of collecting garbage. Java garbage collection relieves programmers from the burden

of freeing allocated memory, in doing so making programmers more productive. The

disadvantage of a garbage-collected heap is that it will halt almost all working threads

when garbage is collecting. In addition, programmers in a garbage-collected environ-

ment have less control over the scheduling of CPU time devoted to freeing objects that

are no longer needed.If one adds Java applications are NOT scalable by given too

much memory. In most cases, 3GB memory assigned to Java heap (through "-Xmx"

option) is enough. “ Cited [14].

This scenario gives the conlucion that Java applications must be well prepared for

the scalability, from the system design phase to the implementation phase of the prod-

ucts' life cycle. The scalability is really based on ones programmer vision.

4. Conclusion

In a Web environment concurrent use is measured as simply the number of users mak-

ing requests at the same time. When the application has decent response time then this

aspect is called good performance. Performance refers to the capability of a system to

provide a certain response time. It is also software quality metric.

It became crucial for the author of CMS when number of visitors of web page of

Lodz University of Technology inceased in 2010.

As we see in this paper the system become production application from academic,

focusing in the later stage on the performance increasing teachnique rather then func-

tional. The author realies that the systems are NOT scalabable out-of-the-box and in

nearly all cases this is architectural problems.

The system reached decend response time ~1s for 0-2000 http request at the same

time. The statistics shows nearly 300.000 http sessions per month in a peak period.

Author suggest premature optimization shoud be done with performance optimiza-

tion during designing and implantation phase.

Lifecycle APM (Lifecycle Performance Management) and Continuous Performance

Management [19], suggest to get all information to know about the scalabilty and per-

formance characteristcs of your application any time. This serves as a basis for deciding

when and where to optimize.

“Concluding we can say that if we want our systems to be scalable we have to take

this into consideration right from the beginning of development and also monitor

throuhout the lifecycle. If we have to ensure it, we have to monitor it. This means that

performance management must then treated equally relevant than the management of

functional requirements”. [16]

References

[1] Wojciechowski J., Napieralski A., „Zastosowanie Platformy J2EE w Projekcie Serwisu Internetowego

DWZ P.Ł” XI Konferencja „Sieci i Systemy Informatyczne”, Łódź, październik 2003, pp. 131-135,

ISBN 83-88742-91-4.

 From Academic Project to Production Software Based on Java Web-tier CMS Application 173

[2] Wojciechowski J., Napieralski A. „System wspomagający wykładowcę i studenta przez WWW”, Mi-
kroelektronika i informatyka, maj 2004, KTMiI P.Ł. pp. 235-238, ISBN 83-919289-5-0.

[3] Wojciechowski J., Sakowicz B., Dura K., Napieralski A., “MVC model struts framework and file up-

load issues in web applications based on J2EE platform”, TCSET’2004, 24-28 Feb. 2004, Lviv,
Ukraine, pp., 342-345 , ISBN 966-553-380-0.

[4] Szymański G., Wojciechowski J.A., Ciota Z. “Design of Web-Based Tutor-Supporting System on The

Basis of JAVA Platform” 11th International Conference MIXDES 2004, Szczecin , Poland 24-26 June,
pp. 607-610, ISBN 83-919289-7-7.

[5] Wojciechowski J.A., Owczarek M., Napieralski A. “Java Web Services Aplication in University Web

System” 11th International Conference MIXDES 2004, Szczecin , Poland 24-26 June, pp. 611-614,
ISBN 83-919289-7-7.

[6] Wojciechowski J., Kozłowski M., Napieralski A. “Security Aspects of Web Applications Implemented

within J2EE Platform” 11th International Conference MIXDES 2004, Szczecin , Poland 24-26 June,
pp. 619-622, ISBN 83-919289-7-7.

[7] Wojciechowski J.,Napieralski A. „System jednolitej autoryzacji w środowisku heterogenicznym opar-

tym o www z zastosowaniem architektury klucza publicznego PKI oraz bazy danych LDAP” Interna-
tional Workshop for Candidates for a Doctor’s Degree, 16-19 October, Wisła, pp. 461-464, ISBN 83-

915991-8-3.

[8] Wojciechowski J., Murlewski J., Napieralski A. “Pozycjonowanie stron internetowych w serwisach
wyszukiwawczych na przykładzie Google”, KmiTI Mikorzyn 23-25.09.2005, Mikroelektronika i In-

formatyka, Prace Naukowe, Łódź 2005, str. 89-94, ISBN 83-922632-0-0

[9] Wojciechowski J., Murlewski J., Sakowicz B., Napieralski A., "Object-relational mapping application
in web-based tutor-supporting system", CADSM, Lviv-Polyana, Ukraine, Feb. 23-26, 2005, pp. 307-

310, ISBN 966-553-431-9.

[10] Owczarek D., Wojciechowski J., Murlewski J., Sakowicz B.,Napieralski A: „Electronic Document
Management System”,13th International Conference Mixed Design of Integrated Circuits and Systems

MIXDES 2006, 22-24 czerwca 2006, Gdynia,wyd. KMiTI, str. 791-792, ISBN 83-922632-9-1.

[11] Wojciechowski J. „New methodology in designing reactive systems with formal methods based on au-
thorization for hierarchical, component based system with time dependencies”, International PhD

Workshop for Candidates for a Doctor's Degree OWD 2006, 21-24 X 2006, Wisła, Polska.

[12] Wojciechowski J. „Mapping of Petri net formal model of concurrent system to class model with aspect
of polymorphism in object oriented paradigm”, Zeszyty Naukowe Katedry Mikroelektroniki i Technik

Informatycznych : Mikroelektronika i Informatyka, zeszyt nr 7, Łódź 2007, ss.167-170, ISBN 83-

9222632-5-1.
[13] Zięba B., Wojciechowski J., Jabłoński G., Zabierowski W., Napieralski A., :Web-Based Distributed

Physic-Based Simulation System of Semiconductor Diode Structure” 10th International Conference

Mixed Design of Integrated Circuits and Systems MIXDES 2003, 26-28 June 2003, Łódź, Poland , pp.
690-693, ISBN 83-7283-095-9.

[14] Scaling Your Java EE Applications, By Wang Yu, 01 Jul 2008, TheServerSide.com, http://www.

theserverside. com/ news/1363681/Scaling-Your-Java-EE-Applications.
[15] The Top 10 Ways to Botch Enterprise Java Application Scalability and Reliability, Cameron Purdy on

Jul 23, 2008, http://www.infoq.com/presentations/10-ways-botch-scalability-reliability.

[16] Performance vs. Scalability September 11, 2008, Alois Reitbauer http://apmblog.dynatrace.com/
2008/09/11/performance-vs-scalability/

[17] Wojciechowski J., “From formal methods to implementation based on Petri Nets model of concurrent

systems”, Pomiary, Automatyka, Kontrola, Vol. 53, No. 5/2007, Maj 2007, pp.132-134, ISSN 0032-
4140.

[18] Wojciechowski J. ”Translation method of Coloured Petri Nets models towards Java Web application

schema based on multi-tier distributed authorization system” Praca doktorska, 2009, Biblioteka
Politechniki Łódzkiej.

[19] Compuware APM application lifecycle performance management http://www.compuware.com/en_us/

application-performance-management/products/lifecycle-performance-management.html
[20] “Google secrets. How to get a top 10 Ranking on the most important search engine in the world” Blue

Moose Webworks Inc., 2003, ISBN 0-9728588-0-6 .

Authors and affiliations

Marek Majchrzak– Chapter 1

Capgemini Polska, Wrocław, Poland

majchmar@gmail.com

Łukasz Stilger – Chapter 1

Capgemini Polska, Wrocław, Poland

lukasz.stilger@capgemini.com

Aneta Poniszewska-Marańda – Chapter 2

Institute of Information Technology, Lodz University of Technology, Poland

aneta.poniszewska-maranda@p.lodz.pl

Rafał Włodarski – Chapter 2

Institute of Information Technology, Łódź University of Technology, Poland

r.wlodarski89@gmail.com

Mariusz Postol – Chapter 3

Institute of Information Technology, Łódź University of Technology, Łódź,

Poland, mariusz.postol@p.lodz.pl

Emilia Mendes – Chapter 4

Department of Software Engineering, Blekinge Institute of Technology,

Karlskrona, Sweden, emilia.mendes@bth.se

Krzysztof Wnuk – Chapter 4

Department of Software Engineering, Blekinge Institute of Technology,

Karlskrona, Sweden, krzysztof.wnuk@bth.se

Zbigniew Huzar– Chapter 5

Faculty of Computer Science and Management, Wrocław University of

Technolog, Wrocław, Poland, zbigniew.huzar@pwr.edu.pl

Małgorzata Sadowska– Chapter 5

Faculty of Computer Science and Management, Wrocław University of

Technology, Wrocław, Poland, m.sadowska@pwr.edu.pl

Bogumila Hnatkowska – Chapter 6

Wroclaw University of Technology, Wrocław, Poland,

bogumila.hnatkowska@pwr.edu.pl

Dariusz Gall – Chapter 7
Wrocław University of Technology, Wroclaw, Poland, dariusz.gall@pwr.edu.pl

Anita Walkowiak– Chapter 7
Wrocław University of Technology, Wroclaw, Poland

anita.walkowiak@pwr.edu.pl

Stan Jarzabek – Chapter 8
Faculty of Computer Science, Bialystok University of Technology, Bałystok,

Poland, s.jarzabek@pb.edu.pl

Kuldeep Kumar – Chapter 8
Department of Computer Science, School of Computing

National University of Singapore, Singapore, kuldeepkumar@u.nus.edu

Tomasz Rogalski – Chapter 9
Rzeszow University of Technology, Department of Avionics and Control

Systems, Rzeszów, Poland, trogalski@prz.edu.pl

Sławomir Samolej – Chapter 9
Rzeszow University of Technology, Department of Avionics and Control

Systems, Rzeszów, Poland, ssamolej@prz.edu.pl

Christian Berger – Chapter 10

Department of Computer Science and Engineering Chalmers, University of

Gothenburg, Gothenburg, Sweden, christian.berger@gu.se

Rakesh Rana – Chapter 10
Department of Computer Science and Engineering Chalmers, University of

Gothenburg, Gothenburg, Sweden, rakesh.rana@gu.se

Miroslaw Staron – Chapter 10
Department of Computer Science and Engineering Chalmers, University of

Gothenburg, Gothenburg, Sweden, miroslaw.staron@gu.se

Jarosław Wojciechowski – Chapter 11
Computer Center - Lodz University Of Technology, Łódź, Poland

jaroslaw.wojciechowski@p.lodz.pl

