
Software Engineering
from Research and Practice Perspectives

Scientific Editors

Lech Madeyski
Mirosław Ochodek

Conferences organized by

the Polish Information Processing Society:

IX edition of the Congress of Young IT Scientists

XVI edition of the Polish Conference on Software Engineering

XXI edition of Real Time Systems

and co-organized by the Wielkopolska Branch of PIPS

XVIII edition of Signal Processing

were supported

by the Ministry of Science and Higher Education

within the program related to the implementation of tasks of science

dissemination

(Decision No. 1187/P-DUN/2014 on 07/07/2014)

Polish Information Processing Society

Software Engineering
from Research and Practice Perspectives

Scientific Editors

Lech Madeyski
Mirosław Ochodek

Poznan-Warsaw 2014

The Polish Information Processing Society
Scientific Council

prof. dr hab. Zdzisław Szyjewski – Chairman

dr hab. prof. PWr Zygmunt Mazur – Vice-Chairman

dr hab. inż. prof. PG Cezary Orłowski – Vice-Chairman

dr hab. Jakub Swacha – Secretary

prof. dr hab. Zbigniew Huzar

prof. dr hab. Janusz Kacprzyk

prof. dr hab. inż. Marian Noga

prof. dr hab. inż. Ryszard Tadeusiewicz

dr hab. prof. WWSZiP Tadeusz Gospodarek

dr hab. prof. UE in Wroclaw Leszek A. Maciaszek

dr hab. inż. Lech Madeyski

dr hab. Zenon A. Sosnowski

dr inż. Adrian Kapczyński

dr inż. Andrzej Romanowski

dr inż. Marek Valenta

Authors

Dirk Riehle – CHAPTER 1
Miklós Biró – CHAPTER 2

Jakub Jurkiewicz, Piotr Kosiuczenko, Lech Madeyski, Mirosław Ochodek,
Cezary Orłowski, Łukasz Radliński – CHAPTER 3

Marek Majchrzak, Łukasz Stilger, Marek Matczak – CHAPTER 4
Tomasz Sitek, Artur Ziółkowski – CHAPTER 5

Robert Waszkowski – CHAPTER 6
Jerzy Niepostyn, Andrzej Tyrowicz – CHAPTER 7

Łukasz Radliński – CHAPTER 8
Bogumiła Hnattkowska, Łukasz Wrona – CHAPTER 9

Andrzej Ratkowski, Krzysztof Gawryś, Eliza Świątek – CHAPTER 10
Ilona Bluemke, Anna Stępień – CHAPTER 11
Michał Ćmil. Bartosz Walter – CHAPTER 12
Wojciech Frącz, Jacek Dajda – CHAPTER 13

Reviewers

Bartosz Alchimowicz, Piotr Czapiewski, Włodzimierz Dąbrowski,
Iwona Dubielewicz, Bogumiła Hnatkowska, Jarosław Hryszko,

Aleksander Jarzębowicz, Krzysztof Juszczyszyn, Sylwia Kopczyńska,
Leszek Maciaszak, Michał Maćkowiak, Marek Majchrzak, Roland Manglus,
Piotr Miklosik, Karolina Muszyńska, Michał Negacz, Mirosław Ochodek,

Cezary Orłowski, Willy Picard, Łukasz Radliński, Jakub Rojek,
Martin Shepperd, Michał Śmiałek, Janusz Sobecki, Mirosław Staron,
Andrzej Stasiak, Wojciech Thomas, Lech Tuzinkiewicz, Tomasz Wala,

Anita Walkowiak, Bartosz Walter, Jacek Widuch, Łukasz Wrona

Scientific Editors

Lech Madeyski
Mirosław Ochodek

Copyright © by The Polish Information Processing Society
Poznan-Warsaw 2014

ISBN 978-83-63919-16-0

Edition I
NAKOM Publishers, Starołęcka St. 18A, room 303, 61-361 Poznan, Poland

Table of Contents

Preface 9

 Dirk Riehle, Miklós Biró 11

1. Recent Polish achievements in Software Engineering 15

Part I – Project Management 39

2. Working with Agile in a Distributed Environment 41

3. Management of IT project experiences on the basis of SOEKS 55

Part II – Requirements Engineering 71

4. Functional Safety, Traceability, and Open Services 73

5. The Sufficient Criteria for Consistent Modeling From the Con-
text Diagram to the Business Use Case Diagrams Driven By
Consistency Rules

83

6. How software development factors influence user satisfaction in
meeting business objectives and requirements?

101

Part III – Software Architecture and Design 121

7. Comparison of selected ESBs on the base of ISO standards 123

8. Architectural Patterns Applied in Internet of Things 133

9. DCI implementation in C++ and JAVA – case study 153

Part IV – Software Quality 165

10 E2A – An Extensible Evolution Analyzer for Software Reposito-
ries

167

11 Can the source code be reviewed on a smartphone? 179

Authors and affiliations 197

Preface

Software Engineering is a relatively young engineering discipline. The term
was coined during the NATO conference held in 1968 in Garmish, Germany. In
fact, the composition of two words ``software'' and ``engineering'' was rather
provocative at that time, because the young software development industry was
going through difficult times – also known as the ``software crisis''. When com-
puters became more popular and software development went from scientific
laboratories to massive production, it became obvious that without systematic,
well founded ``engineering" methods, development of complex software sys-
tems would remain extremely difficult and risky business.

The IEEE Computer Society defines software engineering as: ``(1) The ap-
plication of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to
software. (2) The study of approaches as in (1)." Thus, one could use the term
software engineer either to refer to a person who professionally delivers soft-
ware systems or to one who investigates phenomena related to software devel-
opment – which seems natural to academia. In fact, the currently promoted agile
software development methods show that effective software development or-
ganizations require both – practical skills of their employees and the ability to
critically look at existing problems to continuously grow. Such thinking creates
a unique opportunity for closer collaboration between practitioners and re-
searches. However, before that could happen, both – engineers and researchers
need to better understand each other’s views on software development.

In this book, we asked practitioners and researchers to share their thoughts
on chosen problems related to software development. We would like to begin
the book by presenting selected, valuable results of research in the area of Soft-
ware Engineering. Firstly, we would like to present two internationally recog-
nized researchers – Dirk Riehle from the Friedrich-Alexander University of
Erlangen-Nürnberg and Miklós Biró representing Software Competence Center
Hagenberg, who changed the way we perceive Open Source and Software Pro-
cess Improvement. Secondly, in Chapter 1, we discuss recent, prominent re-
search in the area of Software Engineering conducted by researchers from the
Polish research institutions. The rest of the book is organized into four parts:
project management; requirements engineering; software architecture and de-
sign; and software quality.

10 Software Engineering from Research and Practice Perspectives

In the first part of the book, the contributing authors discuss problems related

to project management. In Chapter 2, the practitioners from Capgemini Poland
share their practical experience from conducting projects in distributed envi-
ronment using agile methodologies. In Chapter 3, the researchers from Gdansk
University of Technology discus the possibility of supporting decision-making
in IT projects.

In the second part of the book, different aspects of requirements engineering
are discussed. In Chapter 4, Miklós Biró from Software Competence Center
Hagenberg gives a brief overview of standard approaches to functional safety
with examples from the medical domain. The following Chapter 5 was contrib-
uted by the authors combining perspectives – research (Warsaw University of
Technology) and practice (Agencja Europejska). They discuss problems related
to preserving consistency between semi-formal diagrams such as context dia-
grams and use-case diagrams. Finally, in Chapter 6, Łukasz Radliński, from
West Pomeranian University of Technology investigates the factors that seem to
influence user satisfaction in meeting business objectives and requirements.

The third part of the book is dedicated to software architecture and design. In
Chapter 7, the researchers from Wroclaw University of Technology evaluate
and compare three popular Enterprise Service Buses (ESB), based on the ISO
9126 standard. In Chapter 8, a group of researchers from Warsaw University of
Technology discusses potential applications of architectural patterns to some of
the emerging problems in so-called Internet of Things. In Chapter 9, the re-
searchers from Warsaw University of Technology give advices on how to effi-
ciently implement Data, Context and Interaction architectural pattern (DCI) in
Java and C++ programming languages.

The last part of the book discusses problems related to software quality. In
Chapter 10, two researchers from Poznan University of Technology present
their extensible software tool E2A that allows defining and collecting software
metrics. Finally, in Chapter 11, two authors from AGH University of Science
and Technology present a promising approach to perform source code reviews
on mobile devices.

Finally, we would like to express our deep gratitude towards the authors of
chapters for their contributions and to the reviewers for their valuable remarks.

Lech Madeyski
Mirosław Ochodek

Dirk Riehle

Prof. Dr. Dirk Riehle is the Professor for Open Source Software at the Frie-
drich-Alexander University of Erlangen-Nürnberg. Before joining academia,
Riehle led the Open Source Research Group at SAP Labs, LLC, in Palo Alto,
California (Silicon Valley). Before this, he was the co-founder of an on-demand
business software startup in Berlin, Germany, which used agile methods and
strategically employed open source software. Riehle is interested in open source
software engineering and agile methods, complexity science and human collab-
oration, as well as software design. Prof. Riehle holds a Ph.D. in computer sci-
ence from ETH Zürich and an M.B.A. from Stanford Business School.

In more detail: Riehle’s dissertation at ETH Zurich on object-oriented
frameworks and design patterns explored the use of collaboration-based design
(then called role modeling) to reduce complexity in the engineering of object-
oriented software systems. It emphasized the use of design patterns in frame-
work design and construction. He also translated the seminal Design Patterns
book into German, all while employed at UBS’ Ubilab, a Zurich-based industri-
al research lab, during the late 1990s. From 1999 to 2002, Riehle lead the de-
sign and implementation of the first UML virtual machine while employed at
Skyva, a Boston-based software startup. The UML VM interpreted UML mod-
els as programs and made it faster, better, and cheaper to develop business ap-
plications. UML was treated as a framework for domain-specific languages for
different aspects of business modeling. Skyva was acquired by ABB. After re-
ceiving an M.B.A. from Stanford Business School, Riehle co-founded a soft-
ware startup in Berlin, Germany that provided on-demand software (SaaS) to
small businesses. In 2006, he moved back to the United States to work for SAP
in the Silicon Valley, where he was the principal investigator of open source
and Web 2.0 applications research. In 2009 he moved to Germany for his cur-
rent position as a professor at the University of Erlangen.

Riehle has published in leading journals and conferences, including the
CACM, Computer, IEEE Software, OOPSLA, ICSE, and OSS. His publication
record comprises more than 50 peer-reviewed and well-cited academic papers.
He is serving on the editorial boards of TPLoP, IJOSSP and IJODE and he has
been a reviewer for many leading journals, transactions, and conferences on
object orientation and software engineering, including ACM TOSEM, IEEE
TSE, OOPSLA, ECOOP, and OSS. He is the founder and chairman of the steer-
ing committee of the International Symposium on Wikis and Open Collabora-
tion conference series and a founding member of the steering committee of the
Onward! conference series. He is a member emeritus of the board and prior

12 Software Engineering from Research and Practice Perspectives

treasurer of the Hillside Group, the U.S.-based non-profit behind the software
patterns community. He is a frequent speaker at academic conferences and col-
loquia and industry events alike.

Prof. Dr. Dirk Riehle is also frequently invited as a keynote speaker at rec-
ognized conferences, workshops, and seminars. Below, we present two selected
abstracts of his research talks regarding Open Source.

Sustainable Open Source

• KKIO’14 Software Engineering Conference
• 2014 BITKOM Forum “Future of Open Source”
• Research Seminar at Victoria University of Wellington, New Zealand, 2012

Abstract: MySQL was sold for one billion US-dollar. Red Hat is worth a multi-
ple of that. The Eclipse Foundation has pushed many software tool vendors out
of business. How come that open source, a phenomenon dubbed “temporary”
not only has become sustainable but the business strategy of choice? In this talk,
I discuss the four main business models, two for-profit and two not-for-profit,
that have made open source sustainable. These models are changing the busi-
ness of software and the future of our industry.

Best of Our Empirical Open Source Research

• 39th International Conference on Current Trends in Theory and Practice of
Computer Science, SOFSEM 2013

• Research Seminar at Victoria University of Wellington, New Zealand, 2012

Abstract: Open source software is publicly developed software. Thus, for the
first time, we can broadly analyze in data-driven detail how people program,
how bugs come about, and how we could improve our tools. In this talk, I’ll
review six years of our open source empirical (data) research and highlight the
most interesting insights, including how different (or not) open source is from
closed source programming.

Miklós Biró

Dr. Miklós Biró is Key Researcher and Scientific Head of the Process and
Quality Engineering Research Focus at Software Competence Center Ha-
genberg GmbH (SCCH, Austria), Full Professor (Ordentlicher Hochschulpro-
fessor in German) nominated by the prime minister of Hungary, Doctor Habili-
tatus (Corvinus University of Budapest) with software engineering, university
teaching (including professorship in the USA), research, and management expe-
rience.

Ph.D. in Mathematics (Loránd Eötvös University in Budapest), Master of
Science in Management (Purdue University, USA). Fluent in Hungarian, Eng-
lish, and French. Initiating and managing role in numerous European projects.
Author of Hungarian and English language books and publications.

Founding president of the professional division for Software Quality Man-
agement of the John von Neumann Computer Society, Hungarian national rep-
resentative in IFIP TC-2 Software: Theory and Practice. Chair of professional
conferences, member of programme committees and journal editorial board.

Dr. Miklós Biró contributed to the book as an author of Chapter 4, entitled
“Functional safety, traceability, and Open Services.”

PART I
PROJECT MANAGEMENT

Chapter 1

Recent Polish achievements in Software Engineering

Publications in top research journals (indexed by ISI) as well as citations are crucial in any research
field to position the work and to build on the work of others. The objective of this chapter is twofold:
to give an overview of the achievements of Polish research centers in the field of software engineer-
ing since 2010, and to present few recent contributions by researchers with Polish affiliations in ISI
journals in the field of software engineering or closely related fields.

1.1. Introduction

Glass was the first who two decades ago published an assessment of systems
and software engineering scholars and institutions [Gla94]. The set of journals
selected by Glass included IEEE Transactions on Software Engineering (TSE),
ACM Transactions on Software Engineering and Methodologies (TOSEM), IEEE
Software (SW), Information and Software Technology (IST), Journal of Systems
and Software (JSS), and Software: Practice and Experience (SPE). In 2009 Wong
et al. [WTGBC09] have analyzed publications in the period of 2002–2006 using
this set of journals extended by the Empirical Software Engineering (EMSE) jour-
nal to emphasize the importance of strong empirical component. The most recent
report by Wong et al. was published in 2011 [WTGBC11].

A complementary series of analyses of the most cited articles in the software
engineering journals has been published by Wohlin. The most recent of analyses
was published in 2009 on a basis of 18 software engineering journals [Woh09].

However, to the best of our knowledge, neither similar analyses but related
to Polish research institutions or researchers involved in the software engineer-
ing field, nor an overview of selected of contributions by researchers with Polish
affiliations in ISI software engineering (or closely related) journals have been pub-
lished so far. Hence, the aim of this chapter is to fill this gap.

The aim of the first section is to give an overview of the contribution of re-
searchers with Polish affiliations in comparison to other European countries. The
aim of the subsequent sections is to go into details and present short overviews of
selected contributions of Polish authors published by ISI indexed journals within
the software engineering field or computer science in general. The presented con-
tributions include identification of events in use cases, solving the invariability
problem in OCL, predicting the flow of defect correction effort to optimize the

16 Software Engineering from Research and Practice Perspectives

amount of quality assurance (QA) activities to minimize the total project effort,
and model of a maturity capsule in software project management.

1.1.1. Selection decisions

An important decision when looking at Polish contributions to the field of
software engineering is which ISI software engineering journals to include. We
decided to include in the analyzed set of journals all of the software engineering
journals analyzed by Wong et al. [WTGBC11] as well as Wohlin [Woh09], even
if they changed their names (e.g., Journal of Software: Evolution and Process
continues, since 2012, the tradition of the Journal of Software Maintenance and
Evolution: Research and Practice and Software Process: Improvements and Prac-
tice, while IET Software continues, since 2007, the tradition of IEE Proceedings -
Software). Then from the created superset of journals we excluded journals which
are discontinued (Annals of Software Engineering, Software Architecture, Soft-
ware – Concepts and Tools) or journals without impact factor in 2013. In spite
of the fact that the created our set of journals based on the inclusion decisions
of the renowned authors of previous analyses – Wong et al. [WTGBC11] and
Wohlin [Woh09] – and minor constraints related to impact factor in year 2013, the
created set of journals is by no means complete and can be extended even further.
Our arbitrary decision is to extend the set of journals by adding the Software and
Systems Modeling journal, which is strictly software engineering journal with as-
signed impact factor. There is also a wide range of computer science journals (e.g.,
Computing and Informatics, Cybernetics and Systems: An International Journal)
which could be included on a paper by paper basis as some of them may be re-
lated to software engineering. However, it would need an extreme effort to check
every published paper. As a result, the set of the analyzed journals is presented in
Table 1.1.

All of these journals are indexed by Scopus, which provides an excellent
search interface including ability to construct advanced search strings. The search
string we used to constrain our search to the papers by authors with Polish af-
filiation published since 2010 in the aforementioned set of journals is presented
below:

(ISSN(1049331X) OR ISSN(09288910) OR ISSN(13823256) OR ISSN(17518806) OR
ISSN(07407459) OR ISSN(00985589) OR ISSN(09505849) OR ISSN(02181940) OR
ISSN(1532060X) OR ISSN(09473602) OR ISSN(20477481) OR ISSN(09639314) OR
ISSN(09600833) OR ISSN(00380644) OR ISSN(01641212) OR ISSN(16191366)) AND
AFFIL(poland) AND (PUBYEAR > 2009)

Recent Polish achievements in Software Engineering 17

Table 1.1. Set of analyzed software engineering journals.

ACM Transactions on Software Engineering and Methodology (TOSEM)
Automated Software Engineering (ASE)
Empirical Software Engineering (EMSE)
IET Software (IETSW)
IEEE Software (SW)
IEEE Transactions on Software Engineering (TSE)
Information and Software Technology (IST)
International Journal of Software Engineering and Knowledge Engineering (IJSEKE)
Journal of Software: Evolution and Process (JSEP)
Journal of Software Maintenance and Evolution: Research and Practice (JSME)
Requirements Engineering Journal (REJ)
Software and Systems Modeling (SoSyM)
Software Quality Journal (SQJ)
Software Testing, Verification and Reliability (STVR)
Software: Practice and Experience (SPE)
Journal of Systems and Software (JSS)

1.1.2. Search results

The search performed on 14 September 2014 returned 28 document results
(sorted by number of citations):
1. L. Madeyski. “The impact of test-first programming on branch coverage and mutation score

indicator of unit tests: An experiment”. In: Information and Software Technology 52.2 (2010),
pp. 169–184. DOI: 10.1016/ j.infsof.2009.08.007. URL: http:// dx.doi.org/ 10.1016/ j.infsof.
2009.08.007 – 19 citations

2. M. Ochodek, J. Nawrocki, and K. Kwarciak. “Simplifying Effort Estimation Based on Use
Case Points”. In: Information and Software Technology 53.3 (Mar. 2011), pp. 200–213. ISSN:
0950-5849. DOI: 10.1016/ j.infsof.2010.10.005. URL: http://dx.doi.org/10.1016/ j.infsof.2010.
10.005 – 16 citations

3. L. Madeyski and N. Radyk. “Judy – A Mutation Testing Tool for Java”. In: IET Software Jour-
nal (formerly IEE Proceedings Software) 4.1 (2010). Draft: http:// madeyski.e- informatyka.
pl/ download/ Madeyski10b.pdf , pp. 32–42. DOI: 10.1049/ iet- sen.2008.0038. URL: http:
//dx.doi.org/10.1049/ iet-sen.2008.0038 – 16 citations

4. A. Janik and K. Zielinski. “AAOP-based Dynamically Reconfigurable Monitoring System”.
In: Information and Software Technology 52.4 (Apr. 2010), pp. 380–396. ISSN: 0950-5849.
DOI: 10.1016/ j.infsof.2009.10.006. URL: http://dx.doi.org/10.1016/ j.infsof.2009.10.006 – 15
citations

5. G. J. Nalepa and K. Kluza. “UML REPRESENTATION FOR
RULE-BASED APPLICATION MODELS WITH XTT2-BASED BUSINESS RULES”. in: In-
ternational Journal of Software Engineering and Knowledge Engineering 22.04 (2012), pp. 485–
524. DOI: 10.1142/ S021819401250012X. URL: http:// www.worldscientific.com/ doi/ abs/ 10.
1142/S021819401250012X – 10 citations

6. M. Miłkowski. “Developing an Open-source, Rule-based Proofreading Tool”. In: Software:

18 Software Engineering from Research and Practice Perspectives

Practice and Experience 40.7 (June 2010), pp. 543–566. ISSN: 0038-0644. DOI: 10.1002/spe.
v40:7. URL: http://dx.doi.org/10.1002/spe.v40:7 – 10 citations

7. A. Janik and K. Zielinski. “Adaptability Mechanisms for
Autonomic System Implementation with AAOP”. in: Software: Practice and Experience 40.3
(Mar. 2010), pp. 209–223. ISSN: 0038-0644. DOI: 10.1002/spe.v40:3. URL: http://dx.doi.org/
10.1002/spe.v40:3 – 4 citations

8. P. Bachara, K. Blachnicki, and K. Zielinski. “Framework for Application Management with
Dynamic Aspects J-EARS Case Study”. In: Information and Software Technology 52.1 (Jan.
2010), pp. 67–78. ISSN: 0950-5849. DOI: 10 . 1016 / j . infsof . 2009 . 06 . 003. URL: http :
//dx.doi.org/10.1016/ j.infsof.2009.06.003 – 4 citations

9. J. Floch et al. “A Comprehensive Engineering Framework for Guaranteeing Component Com-
patibility”. In: Journal of Systems and Software 83.10 (Oct. 2010), pp. 1759–1779. ISSN:
0164-1212. DOI: 10.1016/ j.jss.2010.04.075. URL: http:// dx.doi.org/ 10.1016/ j.jss.2010.04.
075 – 3 citations

10. S. Deorowicz. “Solving Longest Common Subsequence and Related Problems on Graphical
Processing Units”. In: Software: Practice and Experience 40.8 (2010), pp. 673–700. ISSN:
0038-0644. DOI: 10.1002/spe.v40:8. URL: http://dx.doi.org/10.1002/spe.v40:8 – 3 citations

11. A. Zalewski and S. Kijas. “Beyond ATAM: Early Architecture Evaluation Method for
Large-scale Distributed Systems”. In: Journal of Systems and Software 86.3 (Mar. 2013),
pp. 683–697. ISSN: 0164-1212. DOI: 10.1016/ j.jss.2012.10.923. URL: http:// dx.doi.org/ 10.
1016/ j.jss.2012.10.923 – 2 citations

12. K. Łukasiewicz and J. Miler. “Improving agility and discipline of software development with
the Scrum and CMMI”. in: Software, IET 6.5 (2012), pp. 416–422. ISSN: 1751-8806. DOI:
10.1049/ iet-sen.2011.0193 – 2 citations

13. M. Janicki, M. Katara, and T. Pääkkönen. “Obstacles and Opportunities in Deploying
Model-based GUI Testing of Mobile Software: A Survey”. In: Software Testing, Verification
and Reliability 22.5 (Aug. 2012), pp. 313–341. ISSN: 0960-0833. DOI: 10.1002/ stvr.460.
URL: http://dx.doi.org/10.1002/stvr.460 – 2 citations

14. M. Ochodek, B. Alchimowicz, J. Jurkiewicz, and J. Nawrocki. “Improving the Reliability
of Transaction Identification in Use Cases”. In: Information and Software Technology 53.8
(2011), pp. 885–897. ISSN: 0950-5849. DOI: 10.1016/ j . infsof .2011.02 .004. URL: http:
//dx.doi.org/10.1016/ j.infsof.2011.02.004 – 2 citations

15. R. Hofman. “Behavioral Economics in Software Quality Engineering”. In: Empirical Software
Engineering 16.2 (Apr. 2011), pp. 278–293. ISSN: 1382-3256. DOI: 10.1007/ s10664- 010-
9140-x. URL: http://dx.doi.org/10.1007/s10664-010-9140-x – 2 citations

16. J. Jurkiewicz, J. Nawrocki, M. Ochodek, and T. Głowacki. “HAZOP based identification of
events in use cases”. English. In: Empirical Software Engineering (2013), pp. 1–28. ISSN:
1382-3256. DOI: 10.1007/s10664-013-9277-5. URL: http://dx.doi.org/10.1007/ s10664-013-
9277-5 – 1 citation

17. A. Riel, A. Draghici, G. Draghici, D. Grajewski, and R. Messnarz. “Process and product inno-
vation needs integrated engineering collaboration skills”. In: Journal of Software: Evolution
and Process 24.5 (2012), pp. 551–560. ISSN: 2047-7481. DOI: 10 . 1002 / smr. 497. URL:
http://dx.doi.org/10.1002/smr.497 – 1 citation

18. P. Janczarek and J. Sosnowski. “Investigating software testing and maintenance reports: Case
study”. In: Information and Software Technology 0 (2014), pp. –. ISSN: 0950-5849. DOI:

Recent Polish achievements in Software Engineering 19

http:// dx.doi.org/10.1016/ j.infsof.2014.06.015. URL: http://www.sciencedirect.com/ science/
article/pii/S0950584914001542 – 0 citations

19. L. Madeyski and M. Jureczko. “Which Process Metrics Can Significantly Improve Defect
Prediction Models? An Empirical Study”. In: Software Quality Journal (accepted) (2014).
DOI: 10.1007/ s11219-014-9241-7. URL: http:// dx.doi.org/ 10.1007/ s11219-014-9241-7 – 0
citations

20. L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala. “Overcoming the Equivalent Mutant
Problem: A Systematic Literature Review and a Comparative Experiment of Second Order
Mutation”. In: IEEE Transactions on Software Engineering 40.1 (2014), pp. 23–42. ISSN:
0098-5589. DOI: 10.1109/ TSE.2013.44. URL: http:// dx.doi.org/ 10.1109/ TSE.2013.44 – 0
citations

21. J. Sobecki. “Comparison of Selected Swarm Intelligence Algorithms in Student Courses Rec-
ommendation Application”. In: International Journal of Software Engineering and Knowledge
Engineering 24.01 (2014), pp. 91–109 – 0 citations

22. B. Czarnacka-Chrobot. “RATIONALIZATION OF BUSINESS
SOFTWARE SYSTEMS DEVELOPMENT AND ENHANCEMENT PROJECTS INVEST-
MENT DECISIONS ON THE BASIS OF FUNCTIONAL SIZE MEASUREMENT”. in: Inter-
national Journal of Software Engineering and Knowledge Engineering 23.06 (2013), pp. 839–
868. URL: http : / / www. worldscientific . com / doi / abs / 10 . 1142 / S0218194013500228 – 0
citations

23. T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel. “Predicting the Flow of Defect Correc-
tion Effort using a Bayesian Network Model”. English. In: Empirical Software Engineering
18.3 (2013), pp. 435–477. ISSN: 1382-3256. DOI: 10 . 1007 / s10664 - 011 - 9175 - 7. URL:
http://dx.doi.org/10.1007/s10664-011-9175-7 – 0 citations

24. P. Kosiuczenko. “Specification of Invariability in OCL”. in: Software and Systems Modeling
12.2 (May 2013), pp. 415–434. ISSN: 1619-1366. DOI: 10.1007/ s10270-011-0215-y. URL:
http://dx.doi.org/10.1007/s10270-011-0215-y – 0 citations

25. W. Pedrycz. “KNOWLEDGE MANAGEMENT AND SEMANTIC MODELING: A ROLE
OF INFORMATION GRANULARITY”. in: International Journal of Software Engineering
and Knowledge Engineering 23.01 (2013), pp. 5–11. URL: http:// www.worldscientific.com/
doi/abs/10.1142/S0218194013400019 – 0 citations

26. J. J. Jung, R. P. Katarzyniak, and N. T. Nguyen. “GUEST EDITORS; INTRODUCTION”.
in: International Journal of Software Engineering and Knowledge Engineering 23.01 (2013),
pp. 1–3. DOI: 10.1142/S0218194013020014 – 0 citations

27. R. P. Katarzyniak and G. Popek. “INTEGRATION OF MODAL AND FUZZY METH-
ODS OF KNOWLEDGE REPRESENTATION IN ARTIFICIAL AGENTS”. in: International
Journal of Software Engineering and Knowledge Engineering 23.01 (2013), pp. 13–29. DOI:
10.1142/ S0218194013400020. URL: http: / / www.worldscientific .com/ doi / abs / 10 .1142/
S0218194013400020 – 0 citations

28. M. Psiuk, D. Żmuda, and K. Zielinski. “Distributed OSGi Built over Message-oriented Mid-
dleware”. In: Software: Practice and Experience 43.1 (Jan. 2013), pp. 1–31. ISSN: 0038-0644.
DOI: 10.1002/spe.1148. URL: http://dx.doi.org/10.1002/spe.1148 – 0 citations

20 Software Engineering from Research and Practice Perspectives

We repeated the search process for different countries (changing the part of
the search string responsible for affiliation, e.g. from AFFIL(poland) into
AFFIL(germany)) as well as the world (removing the part of the search string
responsible for affiliation). Figure 1.1 presents a map of Europe including bubbles
with bubble size proportional to the contribution of each country.

0.6%8.5%

4.5%

4.3%
2.8%

2.4%

9.1%

7.4%

10.2%

0.2%

0.2%

2.3%

1.6%

0%

0.1%

1.2%

0.2%

2.6%

0.5%

1.8%

0.2%
0%

1%

4%

0.8%

0.2%

0.1%

0%

0.5%1.8%

1.5%

0%

Figure 1.1. How European countries contribute to leading software engineering journals.

United Kingdom, Spain and Germany contribute the most in terms of the
number of papers published in the analyzed set of leading software engineering
journals and time frame, i.e. 10.2%, 9.1% and 8.5% respectively. It is worth
mentioning that contribution of United States is about 21%.

Recent Polish achievements in Software Engineering 21

Polish contribution (0.6%) is slightly less than the contribution of Portugal
(0.8%), which cannot be considered an achievement taking into account that Poland
is bigger than Portugal. Polish contribution is spread among 13 research institu-
tions (e.g., Wroclaw University of Technology, AGH University of Technology,
Poznan University of Technology, Warsaw University of Technology) and one
software development company (Nokia Siemens Networks).

It would be interesting to check whether there are any interesting trends with
regard to the contribution of Polish researchers in last years. A subsequent analysis
presented in Figure 1.2 shows how selected European countries contributed to the
analyzed set of journals in successive years. We cannot see any specific trend with
regard to Polish contribution in the last five years.

0

3

6

9

2010 2011 2012 2013 2014
Year

P
er

ce
nt

ag
e

co
nt

rib
ut

io
n

of
 a

 c
ou

nt
ry

Country

Austria

Finland

Germany

Poland

Spain

Sweden

United Kingdom|UK

Figure 1.2. Percentage contribution of European countries to leading
software engineering journals.

1.2. Identification of events in use cases

1.2.1. Research context
There are many quality attributes of requirements specifications, one of them

is completeness. If one considers use cases for description of functional require-
ments, it is important to include complete list of events which may interrupt

22 Software Engineering from Research and Practice Perspectives

main scenarios. Missing events can lead to higher project costs and overrunning
schedule. Therefore, a question arises: what is the effective and efficient method
to identify events in use cases? No specific method, aimed at identification of
events in use cases, had been found, hence, as the first step, method based on
HAZOP approach has been proposed and evaluated in comparison to the ad hoc
approach [JNOG13b]. As the second step, automatic method of events identifica-
tion has been proposed and evaluated.

1.2.2. Research objectives

The goal of this study was to propose methods aimed at identification of events
in use cases. Moreover, these methods have been evaluated from the stand point
of accuracy and speed.

1.2.3. Research methods

HAZOP method has been used as a fundament for the proposed H4U method,
which is aimed at identification of events in use cases. H4U uses the notion of
primary and secondary keywords in the process of analysis of use cases. In order
to evaluate the proposed approach, two controlled experiments have been designed
and conducted. In both experiments the H4U method has been compared to the
ad hoc approach. Participants of the first experiment included 18 students and in
the second experiment 64 IT professionals were involved. In both experiments,
the accuracy and speed of the two approaches have been measured and evaluated.
Moreover, an automatic method of events identification has been proposed. In or-
der to elaborate this method, 160 use cases from software projects have been ana-
lyzed. This analysis let to naming 14 abstract event types and two inference rules.
The automatic method has been evaluated from the point of view of speed and
accuracy. Moreover, linguistic quality of the automatically identified events has
been assessed in an experiment based on the assumptions of Turing-test. Bench-
mark use-case-based requirements specification was used in the evaluations of ad
hoc approach, H4U method and automatic method.

1.2.4. Research results

In the first place, H4U method has been evaluated with comparison to the
ad hoc approach. The first experiment (with students) showed that H4U method
allows to achieve more accurate results. However, the participants who used
the H4U method were slower in the analysis of use cases than the participants
who used ad hoc approach. The second experiment (with IT professionals) con-

Recent Polish achievements in Software Engineering 23

firmed these results. The results from both experiments showed that the accu-
racy of events identification ranged from 0.15 to 0.26. Experiment concerning
the proposed automatic method of events identification showed that this method
can achieve accuracy at the level of 0.8, which is better than manual approaches.
Moreover, automatic method is faster than manual methods, i.e., it is able to an-
alyze 10.8 steps per minute, while participant of the experiments were able to
analyze on average 2.5 steps per minute with ad hoc approach and 0.5 steps per
minute with H4U method. In terms of linguistic quality of the automatically iden-
tified events, it can be concluded that the understandability of event descriptions
generated by computer was not worse than understandability of event descriptions
written by humans.

1.2.5. Conclusions
The proposed H4U method, aimed at identification of use-case events, pro-

vides effective alternative to the ad hoc approach in terms of accuracy of event
identification. The accuracy and speed of identification of events can be further
improved by using the proposed automatic method.

1.3. Solving the invariability problem in OCL

1.3.1. Research context
There exist various methods and languages for the specification and model-

ing of object-oriented systems. Contracts are the prevailing way of specifying
systems from the caller point of view (see [Mey88]). The Unified Modeling Lan-
guage (UML) [OMG11] is often used in combination with the Object Constraint
Language (OCL) [OMG12], a high-level language for a contractual specification
of object-oriented systems. In OCL, one can express invariants and operations’
pre- and post-conditions.

The specification of invariable system parts is a well known problem. Usually
when a change of a large system happens, only its small part is modified and the
rest remains unchanged. In case of complex systems one needs a means for avoid-
ing extensive specification of those invariable parts. This is the so called frame
problem. In case of object-oriented systems, one has to specify what happens
with all objects’ attributes and associations. However, without a proper means the
resulting specification can be, and often is, very excessive. For a number of years
this problem remained unsolved for OCL.

24 Software Engineering from Research and Practice Perspectives

The frame problem

In general there exist four approaches to the frame problem: minimal-change
approach, implicit specification and frame formulas. The minimal-change ap-
proach requires that the set of changed system parts is minimal, i.e., the change is
in accordance with the specification in the usual sense and moreover the number
of changed parts cannot be smaller. A serious disadvantage of this approach is
that it is very hard to figure out such minimal sets, and the minimality proof can
be complex and non-standard. Thus it is not useful in practice, and specially when
tool support is needed

An implicit approach to invariability was used in case of OCL, however it
dates back to Hoare logic. In this logic all variables which are not mentioned in
the so called Hoare triple are assumed to be unchanged. The idea of the approach
is similar: all system parts not mentioned in a specification must not change. This
approach allows to write simple specifications and does not require any special
means. However, it does not work well for contractual specifications because an
operation execution can have very complex side-effects. This approach also heav-
ily depends on the actual form of the specification and for specifications equivalent
in the classical logical sense it may result in different variable parts.

The frame formulas are used in artificial intelligence (cf. [Sch90]). The idea
is to specify modification of attributes using axiom schemata. This approach
requires however proper means to make the specifications compact. In case of
Java Modeling Language (JML, see [DM05]) and also Spec#, explicit invariability
clauses are used for a compact specification of invariable properties. Invariability
constraints can be checked at the compile-time. Thus, it is not possible to specify
invariability requirements which cannot be checked statically. Moreover, these
languages are much simpler than OCL.

1.3.2. Research objectives

The goal of research [Kos13c; Kos13a] was to provide specification primitives
which address the shortcomings of previously existing approaches. In particular,
these primitives should:

— allow one to specify the invariable part of object-oriented systems
— be language-based, not semantics-based, preferably OCL-based
— allow validity monitoring with standard OCL-tools
— ensure logical equivalence of OCL-specifications in the standard sense
— allow for the application of standard proof techniques

Recent Polish achievements in Software Engineering 25

1.3.3. Research results

A state of an object-oriented system can be understood as a graph with labeled
nodes and labeled edges. The nodes correspond to objects, their labels to their
classes. The edges correspond to links between objects; the corresponding labels
to class attributes and associations among them. A state change of an oo-system
corresponds to a state change of such a labeled graph. Such a change concerns
object creation and deletion, and also link modification. We let the object creation
and deletion be governed by the OCL-specification. However we add new primi-
tives to identify sets of those links which can be removed or replaced by new ones.
Thus, a system change, object removal and creation as well as link modification
can happen as long as the basic OCL-specification is satisfied and the links are
modified only when they are specified by the primitives.

An OCL-specification of an operation has basically three parts. The first part
of the specification declares the context, i.e., the signature of specified method
and the class it belongs to. The second part specifies its pre-condition, i.e., the
condition which has to be satisfied before the operation is executed. The third part
is the post-condition, i.e., a condition which must be valid after the operation’s
execution. We add to operations’ post-conditions invariability clauses of the form:

in p modifies t1::a1, ..., tn::an
Clause p defines a set of classes; in general it can be a metamodel-based view
definition [Kos13c]. Term ti is an OCL-term defining a set of objects of a class
Ci and ai is an attribute or an association-end of this class. For objects defined
by term ti attribute/association ai can be changed. Attribute ai has to belong
to classes defined by p. We do not specify in this clause, what happens with
attributes not included in p.

As an example, consider a bank account with attribute balance storing in-
formation on the actual balance of a bank account and method credit. The way
this method operates can be specified in the extended OCL in the following way:

context BankAccount::credit(amount : Real)
post : self.balance = self.balance@pre + amount
in BankAccount modifes : self::balance

The primitive @pre can occur only in post-conditions. It delivers the value of
attribute balance in the pre-state, i.e., in the state before the method execution.
When it does not occur as a postfix of an attribute, then the value of attribute is
computed in the post-state. Operation credit increases attribute balance by
adding amount. The invariability clause says that credit modifies only the
attribute balance of objects from class BankAccount.

26 Software Engineering from Research and Practice Perspectives

1.3.4. Conclusions

Specification of invariability was a real problem in case of OCL-specifications.
The problem with designing invariability primitives was the descriptive power of
OCL and the plenitude of constructs facilitating specification writing. As a result
of the presented research, a solution of this problem was proposed, which is simple
in form and has natural semantics. It allows one for compact specifications of
invariable system parts in a compact and precise way. The semantics is defined in
terms of standard OCL; this allows for the application of standard OCL-models,
techniques and tools. However, there are still issues to be addressed. For example,
we need to define primitives for associations with multiple ends.

1.4. Predicting the Flow of Defect Correction Effort

1.4.1. Research context

Extensive literature on defect prediction usually deals with predicting number
of defects or defect proneness of a software component. While such information
is useful in many contexts it does not answer the question that is more important
from the resource management perspective, i.e., how much effort will be required
to correct these defects? The described study investigated possibility of predicting
correction effort instead of raw defect count. [SRGR13b]

The environment for this study was the automotive company where software
is developed according to the industrial standard V-model [Ind92] with four suc-
cessive phases: requirements (RE), design (DE), implementation (IM), integration
and testing (I&T). An earlier study [SRGR11] had confirmed that defect correc-
tion effort (DCE) depends on the phases where a defect was inserted and detected.
Specifically, defects inserted in early phase, but detected in later, need more effort
for their correction than if they are inserted and detected in the same phase. This
flow of defect correction effort between phases makes the main rationale for the
proposed predictive model.

1.4.2. Research objectives

The main goal of this study was to develop a model that could predict the de-
fect correction effort at various development phases. This model, called a Defect
Cost Flow Model (DCFM) reflects a V-model of a software development lifecycle
– a real engineering process for developing embedded applications in the automo-
tive industry. With this model it was possible to optimize the amount of quality
assurance (QA) activities in different phases to minimize the total project effort.

Recent Polish achievements in Software Engineering 27

1.4.3. Research methods

Technically, the DCFM is a Bayesian Network (BN). Among various reasons
for choosing a Bayesian Network as a formal representation of DCFM the most
important were:
— Model structure reflects cause-effect relationships for better understanding and

fit to reality.
— BNs may incorporate expert knowledge combined with empirical data.
— They enable performing various types of analyses using rigorous probability

calculus focused on decision support.
The research process involved the following main phases:
1. Problem definition using the Goal-Question-Metric approach.
2. Data gathering and analysis – using the internal change and defect manage-

ment system as main source. The second data source was expert knowledge
from researchers, developers and managers supporting this study. Exiting lit-
erature in the field served as the third data source.

3. Model creation and enhancement covered building initial version of the model
as well as its multiple enhancements. Each version contained new elements
(i.e. variables) and the whole model was calibrated using the data obtained in
the previous phase. The model was created in an iterative process for easier
validation and access to the working (partial) version at each time.

4. Model validation covered general model behavior, practical usefulness, de-
tailed model behavior in numerous scenarios with different input data, sensi-
tivity analysis, and in the possibility of adjusting and calibrating the core of
DCFM.

1.4.4. Research results

The main result was the Defect Cost Flow model. Its structure is too large
for display and discuss in a single figure. Thus, Figure 1.3 illustrates the core
structure of the model while Figure 1.4 presents some details for the design phase.
The defect correction effort flows from the phase where defects are inserted until
they are detected and fixed.

Specifically, some defects inserted in the requirements phase are also fixed
there. But since the review process is imperfect some defects are left and thus
flow to the next phase (design). Correcting these defects in this phase requires
more effort (4-5 times) as reflected by the effort multiplier (Figure 1.4 left). With
higher level of QA activity more defects could be detected in the design phase. But
still, some would be left and detected in later phases.

28 Software Engineering from Research and Practice Perspectives

Figure 1.3. Schematic of DCFM [SRGR13b].

In the design phase also new defects are inserted. They would need to be
detected and fixed – partially in the QA activity, and partially in the next phases
as the defect correction effort (Figure 1.4 right).

The model incorporates various empirical data, e.g.:
— The probabilities for inserting defects slowly decreases in the first three phases

and drops down rapidly in the I&T phase.
— Different levels for sufficiency of QA effort are defined as a percentage of the

core development effort.
— The QA activities are the most efficient in the RE and DE phases. In IM and

I&T phases they are significantly less efficient in detecting defects originating
from earlier phases.

1.4.5. Conclusions

Model validation confirms that the model provides sensible predictions con-
sistent with gathered empirical data and known literature in software engineering
field. What is especially important is that this model has been applied in a real in-

Recent Polish achievements in Software Engineering 29

Phase DE (RE) Phase DE

Phase

Multiplier

(RE) RE to

DE

DCE (RE) in

DE

DCE after

Rev iew (RE)

in DE

Defect

Detection

Potential

(RE) in DE

DCE

Reduced

(RE) in DE

Lev el of QA

activ ity (RE)

in DE

Lev el of QA

activ ity

Dev elopment

Effort

QA Effort

DCF

DCEDCE after QA

Defect

Detection

Potential

DCE

Reduced

DCE (RE)

shifted from

Phase RE

DCE (DE) shifted to Phase IMDCE (RE) shifted to Phase IM

Figure 1.4. Model structure for design phase (DE) [SRGR13b].

dustrial process. It demonstrates high potential in finding the appropriate amount
of review effort for specific development phases to minimize the overall costs.
Thus, the model may be used in the industry for decision support. By extend-
ing and calibrating it can be tailored to meet the needs of specific development
environment.

1.5. Model of a maturity capsule in software project management

1.6. Research context

Research conducted at the Center for Advanced Studies on Campus (CAS)
focuses on issues of software project management and on finding solutions to im-
prove management and development processes. The development methods used
in project management and in the development environment prove inadequate to
the problems of contemporary IT projects. It is therefore proposed that in project
management the development and management processes should be monitored
with the use of the innovative maturity capsule developed at CAS.

1.6.1. Research objectives

The main objective of the study was to define and apply in practice the matu-
rity capsule in IT projects. It was assumed that the concept of the maturity capsule
is to be understood as a set of maturity ratings of the supplier, client and project

30 Software Engineering from Research and Practice Perspectives

(estimated through the scalar negentropy of the project) [KO14a]. To define the
maturity capsule, it is necessary to establish the measurements of the maturity of
the client and the supplier and the project negentropy. The knowledge resulting
from the COBIT (Control Objectives for Information and Related Technology)
and ITIL (Information Technology Infrastructure Library) standards is important
for the initial processing of the project data, which aims at evaluating the maturity
of the supplier and client organizations in question. The TOGAF standard is used
mainly to evaluate a specific indicator, measuring the degree of global maturity of
a project, called negentropy. The applicability of the model is verified in a number
of environments, mainly in IT projects and in the organizations carrying out such
projects [KO14b].

1.6.2. Research methods

The description of the project management processes and information tech-
nologies was based on a formal, discrete - time-linear dynamic description ex-
panded with the essential nonlinear mechanisms in the form of a fuzzy - rule-based
system (with the use of a linguistic estimation developed on the basis of answers
given by experts to sets of questions in interview questionnaires). These descrip-
tions were used to develop a useful model based on a sequence of the following
three steps [SO14]:

1. the fuzzy modeling philosophy, based on the formation of the membership
function, is an appropriate foundation of the universality of the maturity cap-
sule.

2. the number of times of use is a relevant criterion for assessing the quality of
the developed model.

3. the tuning of the model becomes possible through the identification of its
parameters and variables (it is based on linguistic evaluations resulting from
competency questions).

1.6.3. Research results

The conducted studies demonstrated how the maturity capsule can be used by
those managing projects, by development teams and by customer teams in order
to support the processes inside the project in terms of monitoring and predicting
its development. Four levels of verification of the maturity capsule were proposed
[Orł14]. On the first one, the usefulness of the capsule for the managers of IT
projects was evaluated. On the second level, the support for processes which en-
sure corporate governance was referred to, as well as the use of project negentropy

Recent Polish achievements in Software Engineering 31

in supporting the management processes of a company. The third level focused on
the linguistic evaluation of supplier organization maturity in predicting its evolu-
tion. While, on the fourth level of ’control of the level of the client organization
and the processes of its change, a linguistic description was used to support this
evaluation.

1.6.4. Conclusions
In previous studies on project management processes, neither the analysis of

the state nor the maturity of the project was as comprehensive as this one. Both
elements have been included in the maturity capsule to predict and optimize infor-
mation technologies in managing information technology projects. The presented
analysis of the maturity capsule, the possibility to progress in terms of maturity,
and the monitoring of the level of management all allow for predicting technolo-
gies to support the desired changes in the maturity capsule. In this sense, the de-
veloped solution provides an innovative perspective on the management processes
of technologies and IT projects, involving the aggregation of knowledge about the
maturity of the entities in the capsule (client, project and supplier) and the de-
composition of information technologies into services and IT functionalities. The
solution described in this work, regarding a comprehensive evaluation of a project
and involving the use of the maturity capsule, requires indicating how frequent this
evaluation is and analyzing its applicability for the organization/teams of the client
and the supplier, which change dynamically during the project. In such cases, the
standard use of evaluation questionnaires may be inadequate. A better solution
would be to develop and apply a system in which specialized agents make the
assessment. The purpose of such a system would be to evaluate the environment
in which the IT project is carried out.

1.7. Conclusions

The contribution of Polish researchers to the software engineering research
field is limited. The percentage of research papers in the analyzed set of leading
software engineering journals and the time period (2010 – 2014 Sep 14) was about
0.6%. Fortunately, there are some valuable achievements of Polish researchers
which we tried to present briefly in this chapter.

It is also worth mentioning that we did not analyzed which research institu-
tions in Poland contribute the most as sometimes changing an affiliation of one or
two researchers would influence the results to a large extent.

32 Software Engineering from Research and Practice Perspectives

References

[Gla94] R. L. Glass. “An Assessment of Systems and Software Engineer-
ing Scholars and Institutions”. In: Journal of Systems and Soft-
ware 27.1 (Oct. 1994), pp. 63–67. ISSN: 0164-1212. DOI: 10 .
1016 / 0164 - 1212(94) 90115 - 5. URL: http : / / dx . doi . org / 10 .
1016/0164-1212(94)90115-5.

[WTGBC09] W. E. Wong, T. H. Tse, R. L. Glass, V. R. Basili, and T. Y. Chen.
“Controversy Corner: An Assessment of Systems and Software
Engineering Scholars and Institutions (2002-2006)”. In: Journal
of Systems and Software 82.8 (Aug. 2009), pp. 1370–1373. ISSN:
0164-1212. DOI: 10.1016/ j.jss.2009.06.018. URL: http:// dx.doi.
org/10.1016/ j.jss.2009.06.018.

[WTGBC11] W. E. Wong, T. Tse, R. L. Glass, V. R. Basili, and T. Chen. “An
assessment of systems and software engineering scholars and in-
stitutions (2003–2007 and 2004–2008)”. In: Journal of Systems
and Software 84.1 (2011). Information Networking and Software
Services, pp. 162 –168. ISSN: 0164-1212. DOI: http://dx.doi.org/
10.1016/ j.jss.2010.09.036. URL: http:// www.sciencedirect.com/
science/article/pii/S0164121210002682.

[Woh09] C. Wohlin. “An Analysis of the Most Cited Articles in Software
Engineering Journals - 2002”. In: Information and Software Tech-
nology 51.1 (Jan. 2009), pp. 2–6. ISSN: 0950-5849. DOI: 10.1016/
j.infsof.2008.09.012. URL: http:// dx.doi.org/ 10.1016/ j.infsof.
2008.09.012.

[Mad10] L. Madeyski. “The impact of test-first programming on branch
coverage and mutation score indicator of unit tests: An exper-
iment”. In: Information and Software Technology 52.2 (2010),
pp. 169–184. DOI: 10 . 1016 / j . infsof . 2009 . 08 . 007. URL: http :
//dx.doi.org/10.1016/ j.infsof.2009.08.007.

[ONK11] M. Ochodek, J. Nawrocki, and K. Kwarciak. “Simplifying Effort
Estimation Based on Use Case Points”. In: Information and Soft-
ware Technology 53.3 (Mar. 2011), pp. 200–213. ISSN: 0950-5849.
DOI: 10.1016/ j.infsof.2010.10.005. URL: http:// dx.doi.org/ 10.
1016/ j.infsof.2010.10.005.

[MR10] L. Madeyski and N. Radyk. “Judy – A Mutation Testing Tool
for Java”. In: IET Software Journal (formerly IEE Proceedings

Recent Polish achievements in Software Engineering 33

Software) 4.1 (2010). Draft: http:// madeyski.e- informatyka.pl/
download/ Madeyski10b.pdf , pp. 32–42. DOI: 10.1049/ iet- sen.
2008.0038. URL: http://dx.doi.org/10.1049/ iet-sen.2008.0038.

[JZ10a] A. Janik and K. Zielinski. “AAOP-based Dynamically Reconfig-
urable Monitoring System”. In: Information and Software Tech-
nology 52.4 (Apr. 2010), pp. 380–396. ISSN: 0950-5849. DOI:
10 . 1016 / j . infsof . 2009 . 10 . 006. URL: http : / / dx . doi . org / 10 .
1016/ j.infsof.2009.10.006.

[NK12] G. J. Nalepa and K. Kluza. “UML REPRESENTATION FOR
RULE-BASED APPLICATION MODELS WITH XTT2-BASED
BUSINESS RULES”. In: International Journal of Software En-
gineering and Knowledge Engineering 22.04 (2012), pp. 485–
524. DOI: 10 . 1142 / S021819401250012X. URL: http : / / www.
worldscientific.com/doi/abs/10.1142/S021819401250012X.

[Mił10] M. Miłkowski. “Developing an Open-source, Rule-based Proof-
reading Tool”. In: Software: Practice and Experience 40.7 (June
2010), pp. 543–566. ISSN: 0038-0644. DOI: 10.1002/ spe.v40:7.
URL: http://dx.doi.org/10.1002/spe.v40:7.

[JZ10b] A. Janik and K. Zielinski. “Adaptability Mechanisms for
Autonomic System Implementation with AAOP”. In: Software:
Practice and Experience 40.3 (Mar. 2010), pp. 209–223. ISSN:
0038-0644. DOI: 10.1002/ spe.v40:3. URL: http:// dx.doi.org/ 10.
1002/spe.v40:3.

[BBZ10] P. Bachara, K. Blachnicki, and K. Zielinski. “Framework for Ap-
plication Management with Dynamic Aspects J-EARS Case Study”.
In: Information and Software Technology 52.1 (Jan. 2010), pp. 67–
78. ISSN: 0950-5849. DOI: 10.1016/ j.infsof.2009.06.003. URL:
http://dx.doi.org/10.1016/ j.infsof.2009.06.003.

[Flo+10] J. Floch et al. “A Comprehensive Engineering Framework for
Guaranteeing Component Compatibility”. In: Journal of Systems
and Software 83.10 (Oct. 2010), pp. 1759–1779. ISSN: 0164-1212.
DOI: 10.1016/ j.jss.2010.04.075. URL: http://dx.doi.org/10.1016/
j.jss.2010.04.075.

[Deo10] S. Deorowicz. “Solving Longest Common Subsequence and Re-
lated Problems on Graphical Processing Units”. In: Software: Prac-
tice and Experience 40.8 (2010), pp. 673–700. ISSN: 0038-0644.

34 Software Engineering from Research and Practice Perspectives

DOI: 10.1002/ spe.v40:8. URL: http:// dx.doi.org/ 10.1002/ spe.
v40:8.

[ZK13] A. Zalewski and S. Kijas. “Beyond ATAM: Early Architecture
Evaluation Method for
Large-scale Distributed Systems”. In: Journal of Systems and Soft-
ware 86.3 (Mar. 2013), pp. 683–697. ISSN: 0164-1212. DOI: 10.
1016/ j.jss.2012.10.923. URL: http:// dx.doi.org/ 10.1016/ j.jss.
2012.10.923.

[ŁM12] K. Łukasiewicz and J. Miler. “Improving agility and discipline of
software development with the Scrum and CMMI”. In: Software,
IET 6.5 (2012), pp. 416–422. ISSN: 1751-8806. DOI: 10.1049/ iet-
sen.2011.0193.

[JKP12] M. Janicki, M. Katara, and T. Pääkkönen. “Obstacles and Oppor-
tunities in Deploying
Model-based GUI Testing of Mobile Software: A Survey”. In:
Software Testing, Verification and Reliability 22.5 (Aug. 2012),
pp. 313–341. ISSN: 0960-0833. DOI: 10.1002/stvr.460. URL: http:
//dx.doi.org/10.1002/stvr.460.

[OAJN11] M. Ochodek, B. Alchimowicz, J. Jurkiewicz, and J. Nawrocki.
“Improving the Reliability of Transaction Identification in Use
Cases”. In: Information and Software Technology 53.8 (2011),
pp. 885–897. ISSN: 0950-5849. DOI: 10.1016/ j.infsof.2011.02.
004. URL: http://dx.doi.org/10.1016/ j.infsof.2011.02.004.

[Hof11] R. Hofman. “Behavioral Economics in Software Quality Engi-
neering”. In: Empirical Software Engineering 16.2 (Apr. 2011),
pp. 278–293. ISSN: 1382-3256. DOI: 10.1007/s10664-010-9140-
x. URL: http://dx.doi.org/10.1007/s10664-010-9140-x.

[JNOG13a] J. Jurkiewicz, J. Nawrocki, M. Ochodek, and T. Głowacki. “HA-
ZOP based identification of events in use cases”. English. In: Em-
pirical Software Engineering (2013), pp. 1–28. ISSN: 1382-3256.
DOI: 10.1007/ s10664-013-9277-5. URL: http:// dx.doi.org/ 10.
1007/s10664-013-9277-5.

[RDDGM12] A. Riel, A. Draghici, G. Draghici, D. Grajewski, and R. Messnarz.
“Process and product innovation needs integrated engineering col-
laboration skills”. In: Journal of Software: Evolution and Process
24.5 (2012), pp. 551–560. ISSN: 2047-7481. DOI: 10.1002/ smr.
497. URL: http://dx.doi.org/10.1002/smr.497.

Recent Polish achievements in Software Engineering 35

[JS14] P. Janczarek and J. Sosnowski. “Investigating software testing and
maintenance reports: Case study”. In: Information and Software
Technology 0 (2014), pp. –. ISSN: 0950-5849. DOI: http : / / dx .
doi . org / 10 . 1016 / j . infsof . 2014 . 06 . 015. URL: http : / / www.
sciencedirect.com/science/article/pii/S0950584914001542.

[MJ14] L. Madeyski and M. Jureczko. “Which Process Metrics Can Sig-
nificantly Improve Defect Prediction Models? An Empirical Study”.
In: Software Quality Journal (accepted) (2014). DOI: 10 .1007 /
s11219-014-9241-7. URL: http:// dx.doi.org/ 10.1007/ s11219-
014-9241-7.

[MOTJ14] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala. “Overcom-
ing the Equivalent Mutant Problem: A Systematic Literature Re-
view and a Comparative Experiment of Second Order Mutation”.
In: IEEE Transactions on Software Engineering 40.1 (2014), pp. 23–
42. ISSN: 0098-5589. DOI: 10 .1109 / TSE .2013 .44. URL: http :
//dx.doi.org/10.1109/TSE.2013.44.

[Sob14] J. Sobecki. “Comparison of Selected Swarm Intelligence Algo-
rithms in Student Courses Recommendation Application”. In: In-
ternational Journal of Software Engineering and Knowledge En-
gineering 24.01 (2014), pp. 91–109.

[CC13] B. Czarnacka-Chrobot. “RATIONALIZATION OF BUSINESS
SOFTWARE SYSTEMS DEVELOPMENT AND ENHANCE-
MENT PROJECTS INVESTMENT DECISIONS ON THE BA-
SIS OF FUNCTIONAL SIZE MEASUREMENT”. In: Interna-
tional Journal of Software Engineering and Knowledge Engineer-
ing 23.06 (2013), pp. 839–868. URL: http:// www.worldscientific.
com/doi/abs/10.1142/S0218194013500228.

[SRGR13a] T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel. “Predict-
ing the Flow of Defect Correction Effort using a Bayesian Net-
work Model”. English. In: Empirical Software Engineering 18.3
(2013), pp. 435–477. ISSN: 1382-3256. DOI: 10 .1007/ s10664-
011-9175-7. URL: http:// dx.doi.org/10.1007/ s10664-011-9175-
7.

[Kos13b] P. Kosiuczenko. “Specification of Invariability in OCL”. In: Soft-
ware and Systems Modeling 12.2 (May 2013), pp. 415–434. ISSN:
1619-1366. DOI: 10.1007/ s10270-011-0215-y. URL: http:// dx.
doi.org/10.1007/s10270-011-0215-y.

36 Software Engineering from Research and Practice Perspectives

[Ped13] W. Pedrycz. “KNOWLEDGE MANAGEMENT AND SEMAN-
TIC MODELING: A ROLE OF INFORMATION GRANULAR-
ITY”. In: International Journal of Software Engineering and Knowl-
edge Engineering 23.01 (2013), pp. 5–11. URL: http : / / www.
worldscientific.com/doi/abs/10.1142/S0218194013400019.

[JKN13] J. J. Jung, R. P. Katarzyniak, and N. T. Nguyen. “GUEST EDI-
TORS; INTRODUCTION”. In: International Journal of Software
Engineering and Knowledge Engineering 23.01 (2013), pp. 1–3.
DOI: 10.1142/S0218194013020014.

[KP13] R. P. Katarzyniak and G. Popek. “INTEGRATION OF MODAL
AND FUZZY METHODS OF KNOWLEDGE REPRESENTA-
TION IN ARTIFICIAL AGENTS”. In: International Journal of
Software Engineering and Knowledge Engineering 23.01 (2013),
pp. 13–29. DOI: 10.1142/S0218194013400020. URL: http://www.
worldscientific.com/doi/abs/10.1142/S0218194013400020.

[PŻZ13] M. Psiuk, D. Żmuda, and K. Zielinski. “Distributed OSGi Built
over Message-oriented Middleware”. In: Software: Practice and
Experience 43.1 (Jan. 2013), pp. 1–31. ISSN: 0038-0644. DOI: 10.
1002/spe.1148. URL: http://dx.doi.org/10.1002/spe.1148.

[JNOG13b] J. Jurkiewicz, J. Nawrocki, M. Ochodek, and T. Głowacki. “HA-
ZOP based identification of events in use cases”. In: Empirical
Software Engineering (2013), pp. 1–28.

[Mey88] B. Meyer. Object-oriented software construction. Prentice Hall
New York, 1988.

[OMG11] OMG. Unified Modeling Language, Spec. ver. 2.4.1. 2011.
[OMG12] OMG. Object Constraint Language, Spec. ver. 2.3.1. 2012.
[Sch90] L. Schubert. “Monotonic solution of the frame problem in the

situation calculus”. In: Knowledge representation and defeasible
reasoning. Springer, 1990, pp. 23–67.

[DM05] A. Darvas and P. Müller. “Reasoning about method calls in JML
specifications”. In: Proceedings of FTfJP’05. 2005.

[Kos13c] P. Kosiuczenko. “Specification of invariability in OCL, Specify-
ing invariable system parts and views”. In: Software & Systems
Modeling 12.2 (2013), pp. 415–434.

[Kos13a] P. Kosiuczenko. “On the Validation of Invariants at Runtime”. In:
Fundamenta Informaticae 125.2 (2013), pp. 183–222.

Recent Polish achievements in Software Engineering 37

[SRGR13b] T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel. “Predict-
ing the Flow of Defect Correction Effort using a Bayesian Net-
work Model”. English. In: Empirical Software Engineering 18.3
(2013), pp. 435–477. ISSN: 1382-3256. DOI: 10 .1007/ s10664-
011-9175-7. URL: http:// dx.doi.org/10.1007/ s10664-011-9175-
7.

[Ind92] Industrieanlagen-Betriebsgesellschaft (IABG). The V-Model —
General Directive 250. Software Development Standard for the
German Federal Armed Forces. Ottobrunn, Germany, 1992.

[SRGR11] T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel. “Software
Process Model using Dynamic Bayesian Networks”. In: Knowl-
edge Engineering for Software Development Life Cycles: Support
Technologies and Applications. Ed. by M. Ramachandran. Her-
shey: Information Science Reference, 2011, pp. 289–310. ISBN:
978-1-60960-509-4. DOI: 10.4018/978-1-60960-509-4.ch016.

[KO14a] Z. Kowalczuk and C. Orłowski. Advanced Modeling of Manage-
ment Processes in Information Technology. Springer, 2014, pp. 1–
203. ISBN: 978-3-642-40876-2.

[KO14b] Z. Kowalczuk and C. Orłowski. “Model of a Maturity Capsule in
Managing IT Projects”. In: Cybernetics and Systems 45.2 (2014),
pp. 123–135.

[SO14] E. Szczerbicki and C. Orłowski. “Guest Editorial: Designing and
Developing Smart Cognitive Systems: Implementation Lessons
from the Real World”. In: Cybernetics and Systems 45.2 (2014),
pp. 89–91.

[Orł14] C. Orłowski. “Rule-based model for selecting integration tech-
nologies for Smart Cities systems”. In: Cybernetics and Systems
45.2 (2014), pp. 136–145.

Chapter 2

Working with Agile in a Distributed Environment

This chapter describes the approach of Capgemini to agile projects in a distributed environment.
It presents key methods and tools to minimize the geographical and mental distance within dis-
tributed teams, for example: communication between all team members through excellent technical
infrastructure – voice-, video- and desktop sharing tools, using well known best communication
practices as well as exchange programs, where people from each location travel and visit each
other on a regular basis.

There is also a discussion of organizational models for distributed agile teams as well as new
project roles enabling better communication and knowledge sharing.

The system architecture and the role of an architect in agile teams is affected by application
of the best practices and techniques, including, but not limited to, less detailed upfront design,
architects working hands-on, test driven development, clean code rules and domain driven design.

The Capgemini Agile! Nearshore calls for transparency in projects, by sharing the Product
and Sprint Backlogs in digital form, common knowledge-sharing space and shared project infras-
tructure.

Agile methodologies are gaining more and more recognition in IT projects.
According to 2011 CHAOS [CHA11, p. 25] report from the Standish Group Soft-
ware, applications developed through the agile process have three times the suc-
cess rate of the traditional waterfall method and a much lower percentage of time
and cost overruns. However agile processes are not a 100 percent recipe for suc-
cess, especially in case of distributed projects. The decision to distribute team
members is made for a reason - to save money, to recruit in multiple locations, to
gain experts or because of client offices location [Coh09, pp. 386-387].

There are several factors that determine the success of a project. One of the
most important aspects is the team [CH01]. The feeling of being part of a team
is not to be underestimated. The team creates short-and long-term values of the
project. The team is highly motivated to develop their skills. The team under-
stands how to effectively achieve the objectives of the project. The ability to
manage a distributed team is a big challenge.

42 Software Engineering from Research and Practice Perspectives

Based on Capgemini Rightshore R© 1 concept and previous agile experiences,
we have found the following success factors for distributed agile projects:
1. Proper staffing.
2. Proper organization structure.
3. Communication excellence and proper tooling.
4. Right software architecture and technology.

2.1. Architecture in agile engagements

Architecture and the role of an architect are not actually referred to in the
agile approach. However, based on our experience, it changes the way of creating
architecture and redefines the role of an architect compared to more traditional
approaches. This chapter describes the experience in the form of best practices
and techniques.

A detailed upfront design is very common in the waterfall model. Contrary
to it, the agile approach assumes constantly changing requirements; consequently
the architecture created at the very beginning may become outdated. To address
this issue Capgemini Agile! Nearshore recommends to start a project with a less
detailed upfront design, which gives the team more flexibility when requirements
force architectural changes. In some areas requirements alone drive architectural
maturity. This has another consequence: not only architects but also developers
may create architecture as this may happen during development. This, in turn,
raises a question whether an architect is still needed in agile engagements. Our
experience shows that in middle- and large-scale agile projects we still need archi-
tects, although their role differs from the commonly met traditional approaches.

Beside the best practices mentioned above, we have gained practical experi-
ence in applying some design and implementation techniques which are crucial
when it comes to agile engagements. The Domain Driven Design [Eva04] makes
the domain and its jargon understandable within a team. Since the domain model
is independent of technical solutions and not under their influence, it remains
up-to-date all the time.

The Test Driven Development [Bec02] makes the code ready for changes as
there are tests enabling regression testing. The quality of these tests help ver-
ify the developers’ understanding of the requirements. The rules of the Clean

1 Rightshore R© is Capgemini’s global distributed delivery approach where we provide the right
resources, the right location at the right time to clients by leveraging an industrialized approach. We
do this through a global network of centers: on shore, nearshore and offshore. In this article, we
shall focus on nearshore projects.

Working with Agile in a Distributed Environment 43

Code [Mar08] make the code readable and - consequently - easier to maintain
under constant changes.

2.2. Minimize distance with Agile - Agile!Nearshoring

What to do when adopting Agile in a team? The first thing is to make sure
a team has been forged. The teamwork is essential in this context. The team
members have to recognize everybody’s strengths and weekneses. If they can
work that out between them then they know how they can help each other. If they
are not willing to help each other, their chance of success is really slim. So make
them all realize what their roles can be, what they can do to make sure they work
successfully together as a team and then to find out that working together gives far
more rewarding experience.

We decided to use the classical Scrum [SS13] approach as a basis. The Scrum
is most common industry agile standard, a flexible and adaptive framework. Us-
ing Scrum processes and agile ceremonies [WSG10, pp. 1-17], nothing changes
because of Nearshoring. However, due to the specific nature of working in dis-
tributed projects, we have paid particular attention to the team members, the orga-
nization of the team and the tools that facilitate communication.

2.2.1. The team structure
The right team mix is very important for good cooperation of the Scrum Team.

Preference is given to teams of developers who have previously worked together.
Team members selected for the agile project must have better communication and
language skills than the average in other projects. Team members in total should
have broad technical and business domain knowledge to be able to address dif-
ferent issues. At least one person should have a good ability to find experts or
expertise in a specific area, using internal and external resources. Every team
member must be aware of their responsibility for the project goals and results.
Given that one of the aspects determining the success of the project is domain
knowledge, we have proposed the introduction of a new role - Product Owner
Proxy (PP).

Product Owner Proxy. In principle, this role is filled by a business architect
fully experienced in the domain. This role is to support the client and the team
only in the specific area of knowledge; other tasks of the Product Owner, such as
product backlog prioritization, release planning, and whether to accept or reject
work results, are not supported by the Product Owner Proxy role. Usually, the

44 Software Engineering from Research and Practice Perspectives

Product Owner Proxy also has technical skills. It is important, because especially
in the early project stages, they work as a bridge between developers, who tend to
use technical language, and the customer who is rather business oriented.

There is also the aspect of Product Owner’s availability. The person assigned
to this function is often rarely available for the team, and in particular, cannot
travel regularly between locations.

Team organization. Another important element is the organization of a team -
especially at the beginning of the project. We want to avoid a situation, where
despite the right people and tools, the projects are not able to deliver business
value, due to organizational problems. We present two organizational patterns,
which are used as a base for new projects. These models are designed to facilitate
the start of the project, particularly if the team does not have experience in agile
methodologies. Another aspect is the support of organization, especially when
the client has no previous experience in developing systems based on the Scrum
framework. These models, depending on the needs of the client or the team, may
be modified or scaled in subsequent sprints [Coh09, pp. 325-350].

Model 1: The entire Development Team and the Scrum Master in a remote
location The main assumption of this model of organization is to locate the entire

development team in one location, as shown in figure 2.1. The main idea and the
team structure are described below.
— The entire Development Team and the Scrum Master in a remote location.
— Product Owner comes from the Customer’s organization.
— Product Owner Proxy is onsite (or alternatively in a remote location).
— Scrum Master is in a remote location.
— Development Team is in a remote location.

The whole Development Team is seated together. They can organize their
cooperation more efficiently. What is extremely important from the point of view
of agile methodologies, working in one room or in rooms close to each other
(e.g., on the same floor) significantly affects the flow of information and their
quality. Also, there is no need for a distributed developing environment. This is
particularly important for teams using the Pair Programming technique [Bec00],
which is derived from the XP methodology [Bec99].

Only one person (Product Owner Proxy from Capgemini), or alternatively two
persons (both Product Owners) travel frequently.

Working with Agile in a Distributed Environment 45

Customer (onsite) Capgemini (remote)

PPPP SMSMPOPO
C

o
m

m
u

n
ic

at
io

n

PO – Product Owner
PP – Product Owner Proxy
SM – Scrum Master

Figure 2.1. Model 1: The entire Development Team and the Scrum Master in a remote
location.

Although in principle, the team is working remotely, we advice that the first 2
Sprints should be performed onsite to better understand the customer’s needs and
to establish personal relationships.

There are also disadvantages of this setup. Usually the personal access to the
Product Owner from customer for the team members is only occasional. Most
conversations are held via telephone, which affects the quality of the information
passed around. The same goes for end users, who are always a valuable source of
information and data for agile teams.

The environment for acceptance tests is difficult to maintain, because there are
no team members onsite who could take care of it. This problem mainly occurs
when a client does not have its own specialists responsible for IT infrastructure.

Recurring onsite meetings (with customer) for demos and backlog prioritiza-
tion are a necessity. For large distances, delegating some employees significantly
affects the team capacity available for development tasks. Traveling is also asso-
ciated with a significant financial burden on the project - especially for small and
medium-sized projects.

Model 2: The Development Team is distributed In this case part of the team is

on the client’s side (figure 2.2). This model is recommended when the task must

46 Software Engineering from Research and Practice Perspectives

necessarily be carried out at the customer’s premises or where part of the team
(due to their place of residence) may work directly. The main idea and the team
structure are described below.
— Product Owner comes from the Customer’s organization.
— Product Owner Proxy onsite (or alternatively in the remote location).
— Scrum Master in the location where the major part of the team is located.

Self-organizing Team can choose a local coordinator. Such person should take
care of organizational and infrastructural aspects (booking video conference
rooms, local databases, etc) but also help to understand and apply the agile
rules. Ideally he or she should have experience in agile projects.

— Development Team onsite and in a remote location (distributed).
— The team members from different locations should build small domain teams.

Separating team members from different locations should be avoided.

Customer (onsite) Capgemini (remote)

Development TeamDevelopment Team

PPPP

LC/SMLC/SM

POPO

C
o

m
m

u
n

ic
at

io
n

PO – Product Owner
PP – Product Owner Proxy
SM – Scrum Master
LC – Leader/Coordinator

SM/LCSM/LC

Figure 2.2. Model 2: The Development Team is distributed.

Usually the visits are bilateral, all team members have personal contact with
the Product Owner from the customer.

Coordination of the distributed team is more difficult and expensive. Devel-
opment environments must be maintained on both sides if remote access is not
possible. Despite the fact that some of the developers work on the client side, it is
worth ensuring that remote team members make customer visits regularly. This is
to form relationships and mutual trust. In the event of significant communication

Working with Agile in a Distributed Environment 47

problems, it is worth temporarily relocating 1-2 members of the remote team to
work on the client side. Seeding visits and traveling ambassadors are excellent
ways to pick up the local customs and preferences of a team in one location and
return them to another location [Coh09, pp. 370-372].

2.2.2. Tools - the way to minimize distance

The role of tools with Agile teams and processes Tooling is important. Obvi-

ously, the process comes first, people change, culture, team etc. But often many
things get large, they get complex, they get distributed. Tooling becomes essen-
tial. When it comes to communication and cooperation, people typically work on
complex tasks, which makes using tools essential [AL12]. So we mainly focus on
getting tools that help people collaborate.

So if you’ve got a large team involved in big projects, you need to be able to
launch communication, not just in that small agile team (7 +/-2 people), but also
when you get circa 100 people engaged at the same time. You can’t have every-
body physically talking to each other. You need to be able to get communication
through tooling. Tooling gives everybody an insight as to what’s really going
on and allows everybody to understand the big picture and what actual progress
the team has made. While discussing the tools in IT projects we focus on the
following objectives:
— increasing the effectiveness of meetings (method of communication),
— encouraging the team to observe processes and participate in its creation.

Communication effectiveness. An important part of communication is nonver-
bal, and a huge challenge in communication between distributed team members
is missing out on nonverbal clues [WSG10, p. 20]. Social anthropologists argued
that in a normal conversation more than 65 percent [Hal90, Bor08] of social mean-
ing is transferred through the nonverbal channel.
The notion of effective communication includes such communication that benefits
each of the parties [Coc06], e.g.:
— the necessary information is obtained,
— the decisions taken are clear and understandable,
— meetings only involve the necessary people,
— the limitations of each communication channel are gradually eliminated.
In figure 2.3, you can see the relationship between the effectiveness of communi-
cation and the type of tools used.

48 Software Engineering from Research and Practice Perspectives

Figure 2.3. Richness of communication channel [Coc06].

Follow the processes. Adherence to processes is particularly important in dis-
tributed teams. Their compliance can reduce the costs associated with coordina-
tion and unnecessary communication, e.g., explaining the confusion. Profits from
good communication are as follows:
— faster explanation of misunderstandings,
— information spreads throughout the team,
— quick response from the team to queries from the customers and the manage-

ment,
— effective technical and business synchronisation,
— quick feedback in case of impediments and the ability to solve them.

Challenges in distributed environment Fortunately, the claim that running projects

in distributed teams is impossible is becoming less and less common. There are
many examples not only that it is possible, but also that it works well [SS09,
RCMX06]. However, the challenges are far from trivial. A distributed team can
work but will have difficulty sustaining the same pace as a collocated team. Ac-

Working with Agile in a Distributed Environment 49

cording to Fowler [Fow06], distributed development requires more written doc-
umentation and, in general, more formal communication styles, than co-located
teams do.

Technical challenges. There are plenty of opportunities to "improve" commu-
nication during remote meetings. Customers often choose low-budget solutions,
such as Skype. The motivation, of course, is the desire to save money; however,
it is often forgotten that wise investment in infrastructure not only increases com-
fort but also minimizes the risks in communication, which is reflected in the final
success of the project. Therefore, it is recommended to use professional video-
conferencing tools that allow for effective cooperation through desktop sharing,
shared virtual table, etc...

Organizational challenges. Nowadays, there are many interesting solutions, rang-
ing from simple software to videoconferencing hardware with excellent HD qual-
ity and the possibility of smooth transfer. The difficulty does not appear to be hard-
ware limitations (costs), but organizational barriers. Customers of the so-called
”sensitive” sectors, such as the public sector, financial or even automotive sector
no longer permit the use of video equipment in their factories or offices. The rea-
sons are legal restrictions due to data protection. Another example of such a client
is a telecommunications company, which provides processed and aggregated data
about their customers for development purposes.

The human factor. Visualizing means realizing each other’s point of view. The
ultimate goal is to increase mutual trust, which of course translates into the qual-
ity of the Project, including the efficiency and creativity of the team. You can
visualize/”realize” the following aspects:
— work progress (where we are),
— the difficulties we struggle with,
— general morale of the team.

Awareness of each other and ways of visualizing our state In distributed teams,

we often have to deal with a mutual lack of trust, which increases over time. Each
of the distributed teams may have incomplete knowledge about the progress in
other teams. Let us remember that we are working on a common project and any
conflict of interests is unacceptable, as well as different goals or focusing solely on
the individual purposes of one team or part of a team. The typical solution in this
situation is to create coordination functions; but firstly, it is not always enough,

50 Software Engineering from Research and Practice Perspectives

and secondly it generates additional costs. Therefore, we use tools that support
mutual ”awareness” about the progress of work and shared vision. We achieve it
in following ways:
— Backlog, which is an ordered list of functionalities. Of course, Backlog is

shared not only for readout, but it is above all a platform for distributed man-
agement of requirements. This is a continuing activity, in which the Devel-
opment Team and Product Owner work together on the details of user sto-
ries [SS13, pp. 12-13].

— Board (Scrum/Kanban), involves a fast visualization of the current work progress.
The shared board shows the scope of work [KS10], which is interesting at the
moment. Development Team (s) can better synchronize their work every day,
guided by what the Board shows. It is also part of the system to respond to
change, because this Board shows the limitations of the team.

— Wiki is something more than a static page with information or a project en-
cyclopedia. Design Wiki is a platform for shared knowledge management as
well as communication.
Each member of the Development Team is invited to participate in its creation,
no matter where they are and regardless of their time zone!

We have good experience with the use of products by Atlassian: JIRA [Atl14a] -
an issue tracking system and Confluence [Atl14b], one of the most popular wikis
in corporate environments [SD12].

Pull and push communication. The communication media definition identifies
the possible types of media that will aid the organization in delivering the mes-
sages in the communication program. It is best to use a combination of ”push”
and ”pull” communication vehicles.
— Pull communication - places where information can be retrieved from at your

audience’s leisure. We take only this information that interests us.
— Push communication - form of broadcasting, where you provide information

directly to your audience. We inform and expect possible answers.

New ways of effective team communication. A new method of communication
can be the so-called streaming information, such as Facebook, Google Plus or
other Social Communication tools, such as Twitter or Yammer used at Capgem-
ini [Cap12]. Obviously what we mean is using them in the context of software
development project. Thanks to them we have a general view of what is happening

Working with Agile in a Distributed Environment 51

with the project. Well-filtered information sometimes brings a lot more benefits
than the most complete documentation.

There is nothing to hide here ... For the brave teams that want to (and can)
be completely transparent, we offer mutual ”peeking”. This can be achieved in
a simple way, by installing cameras and monitors in every design room. As a
result, we have a general overview of the situation and a great support for other
communication channels, such as telephone or email.

2.2.3. The architecture, development rules and domain knowledge

To avoid problems with the performance and motivation of teams, regardless
of the previously proposed models, we pay attention to the following aspects of
work in the project.
— Shared ownership from the start. An often erroneous assumptions is to build

a strong team on the client side, and then creating a remote location. The best
solution is the parallel development of teams or creating a team in a remote
location on the basis of experienced team members, who previously worked
onsite. They would provide knowledge to new people [CH04, p. 88 - 91].

— Decide architecture together. A vision of architecture is very important, and
even in XP methodology its need is acknowledged [Bec00, p. 113]. The
process of creating the system architecture should involve team members from
all locations.

— Get to know the client and domain. A common problem due to the location is
the lack of understanding of the domain and customer needs by team members.
Domain knowledge is one of the most distinguishing factors supporting sound
design decisions [CB10, p. 85]. It is good to ensure that the team has do-
main expertise and access to domain experts. Not enough context information
off-site will lead to communication and development issues.

— Form personal relationship. Team members should know one another person-
ally, especially since it is easier to overcome barriers formed in the case of
remote communication.

— Avoid local team taking aggressive ownership. The onsite team, which has
direct access to knowledge and the client would often take quick decisions on
the basis of additional meetings organized adhoc. To avoid isolating the team
working remotely, it is recommended to engage selected developers to regular
meetings via video-conference.

52 Software Engineering from Research and Practice Perspectives

A separate aspect involves the issues related to system design. We observe
that software architecture distributes easily enough but the enterprise architecture
often does not. If the chief architect works in a remote team, regular visits to
the customer’s premises are necessary for the current arrangements for enterprise
architecture, especially in cases where other systems are not developed under agile
methodology.

2.3. Summary

With all the advantages of the Agile! Nearshoring approach, such as cost ad-
vantage, scalability and high quality, the main challenge is the geographical and
mental distance between the team members. This obstacle cannot be avoided, but
can be minimized by applying proper tools and exchange programs, where people
from each location travel and visit each other on a regular basis.
We decided to use several collaboration tools and to digitalize Scrum artifacts.
The application of the proper tools can facilitate the Scrum processes and com-
munication between the team members in the distributed work environments. In
order to assure that every team member is aware of the status of the tasks and the
status of the whole Sprint, we use social networking tools like blogs and Wikis in
addition to videoconferencing and telephone.

2.3.1. About Capgemin and Nearshore Center Wrocław
With more than 130,000 people in 44 countries, Capgemini is one of the

world’s foremost providers of consulting, technology and outsourcing services.
The Group reported 2012 global revenues of EUR 10.3 billion. Together with its
clients, Capgemini creates and delivers business and technology solutions that fit
their needs and drive the results they want. A deeply multicultural organization,
Capgemini has developed its own way of working, the Collaborative Business
Experience and draws on Rightshore R©, its worldwide delivery model.

Nearshore Center of Capgemini exists in Wroclaw since 2004, and is thus
part of the worldwide Righshore R© of delivery centers. More than 550 IT experts
currently work in Wrocław delivering high quality services in the areas of software
development, software package implementation and application life cycle services
to German-speaking clients.

Capgemini in Poland employs more than 5000 consultants and IT as well as
business process experts. Centers for IT and business process outsourcing services
exist in Wroclaw, Kraków, Katowice and Opole with the main office serving the
Polish market based in Warszawa.

Working with Agile in a Distributed Environment 53

References

[AL12] S.W. Ambler and M. Lines. Disciplined Agile Delivery: A Practitioner’s
Guide to Agile Software Delivery in the Enterprise. IBM Press. IBM Press,
2012.

[Atl14a] Atlassian. JIRA Documentation, 2014.
[Atl14b] Atlassian. Specification - Confluence Advanced Editor, 2014.
[Bec99] Kent Beck. Embracing Change with eXtreme Programming. Computer,

32(10):70–77, 1999.
[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.
[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 2002.
[Bor08] J. Borg. Body Language: 7 Easy Lessons to Master the Silent Language.

Pearson Prentice Hall Life, 2008.
[Cap12] Capgemini. Building the New Connected Enterprise - Capgemini case

study, 2012.
[CB10] James O. Coplien and Gertrud Bjrnvig. Lean Architecture: For Agile Soft-

ware Development. Wiley Publishing, 2010.
[CH01] Alistair Cockburn and Jim Highsmith. Agile Software Development: The

People Factor. Computer, 34(11):131–133, 2001.
[CH04] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile

Software Development. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2004.

[CHA11] CHAOS Manifesto. Technical report, The Standish Group International,
2011.

[Coc06] Alistair Cockburn. Agile Software Development: The Cooperative Game
(2nd Edition). Addison-Wesley Boston, 2006.

[Coh09] Mike Cohn. Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley Professional, 1st edition, 2009.

[Eva04] Eric Evans. Domain-driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004.

[Fow06] Martin Fowler. Using an Agile Software Process with Offshore Develop-
ment., 2006.

[Hal90] E.T. Hall. The Silent Language. Doubleday, 1990.
[KS10] H. Kniberg and M. Skarin. Kanban and Scrum: Making the Most of

Both. Enterprise software development series. Lulu Enterprises Incorpo-
rated, 2010.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1 edition, 2008.

[RCMX06] Balasubramaniam Ramesh, Lan Cao, Kannan Mohan, and Peng Xu.

54 Software Engineering from Research and Practice Perspectives

Can Distributed Software Development Be Agile? Commun. ACM,
49(10):41–46, October 2006.

[SD12] Shiv Singh and Stephanie Diamond. Social Media Marketing for Dummies.
John Wiley & Sons, 2012.

[SS09] Guido Schoonheim and Jeff Sutherland. Agile Distributed Development
Done Right Using Fully Distributed Scrum, 2009.

[SS13] Ken Schwaber and Jeff Sutherland. The Scrum Guide. Scrum. org, July,
2013.

[WSG10] Elizabeth Woodward, Steffan Surdek, and Matthew Ganis. A Practical
Guide to Distributed Scrum. IBM Press, 1st edition, 2010.

Chapter 3

Management of IT project experiences
on the basis of SOEKS

IT project management is a major challenge for IT organizations which produce software for the
needs of clients. The percentage of failed projects is still high - due to bad decisions, they are
completed later than was planned in the schedule, they cost more than was assumed in the budget
or do not fulfill the tasks specified in the contract. The experience of the authors clearly indicates
the need to support project managers in their decision-making. Previous studies have aimed at
building an intelligent system based on knowledge. It transpires, however, that due to the different
specifications of projects and their strongly individual character, it is impossible to construct
a single, objective knowledge base relying on rules and facts. Therefore, the authors have di-
rected their attention towards an innovative method developed in recent years which involves
recording experiences in the form of so-called SOEKS, and which may be the answer to the
aforementioned problems. This chapter summarizes the first stage of this research.

3.1 Project management

Appropriate project management is one of the biggest challenges for today's
IT organizations, each of which runs several or even a dozen different projects
every year. These projects involve not only software development (though most
commonly they do), but also a range of other activities such as building infra-
structure, upgrading software or the implementation of new technologies in the
organization. However, in every project, managers must make a number of spe-
cific decisions to ensure the success of the project entrusted to them (success
being defined as the implementation of the project according to the agreed cost,
schedule and scope). Due to the fact that every IT project is in definition
a unique action (process) [PM08] it would seem that the decisions made by
managers are different every time. However, the authors' observations in dozens
of projects made it possible to isolate certain common elements (areas) in terms
of which managers make decisions. This made it possible to find a common
denominator between all projects and to isolate the "IT project environment",
in which the authors include: the project team, the client, the tools and the
methods applied during the project, as well as the expertise which supports the
implementation processes of projects. The complexity of the "IT project envi-
ronment" results that the process of decision-making must take into account
a number of relationships between the identified elements (areas) of the envi-
ronment [CK13].

56 Software Engineering from Research and Practice Perspectives

How big is this problem? In the United States, more than $250 billion is be-

ing spent each year on IT application development of approximately 175 000
projects. The average cost of a development project for a large company is
$2 322 000; for a medium company, it is $1 331 000; and for a small company,
it is $434 000. A great many of these projects fails because they are in chaos.
The Standish Group research shows a staggering 31.1% of projects will be can-
celed before they ever get completed. Further results indicate 52.7% of projects
will cost 189% of their original estimates. The cost of these failures and over-
runs are just the tip of the proverbial iceberg. The lost opportunity costs are not
measurable, but could easily be in the trillions of dollars. One just has to look to
the City of Denver to realize the extent of this problem. The failure to produce
reliable software to handle baggage at the new Denver airport is costing the city
$1.1 million per day [CH13].

This proves that bad decisions in IT project environment can cost a lot.
Therefore, the another question arises whether in an such environment of a simi-
lar structure the same decisions should be made (and if it is at all possible).
Does the new knowledge (organizational, technical) conceived as a result of
completing a project (regarding, for example, taking specific steps to solve a
given problem of an organizational nature (For example - the issue of gathering
requirements in a conversation with a client) can be used in future projects? Can
decisions made in one project be applicable (important) in other initiated pro-
jects? In other words - is it possible in the case of IT projects (unique by defini-
tion) to save knowledge and experience for the needs of future projects? This
chapter and the research and experiments described in it are an attempt to an-
swer this question.

3.1.1 Decision variables in IT projects

Consulting firms exploring factors influencing the ultimate success of IT
projects point to the commitment of project management, the involvement of
the client and the clarity of the defined requirements as most important [CH12].
However, these factors do not have a numerical measure and their importance is
determined by a quantitative survey of the project participants. Research con-
ducted by a team including the authors of this chapter has allowed the isolation
of three aggregated variables (adequate to the success factors mentioned above)
which affect the ultimate success of a project. Measurable values can be as-
signed to variables isolated by the authors, to allow project managers to take
action (decisions) adequate to the values of these variables. These variables

Management of IT project experiences on the basis of SOEKS 57

aggregate the key factors influencing the course of the project and these varia-
bles include:

⎯ the maturity of the project team (how big is the level of its internal
management and/or development processes’ maturity; result of previous
experiences of the team),

⎯ the maturity of the client participating in the project (did the customer
take part in similar projects, do the customer have full knowledge of
their needs, can they specify all requirements etc.),

⎯ the level of project entropy corresponding to the level of risk and the
degree of clarification of the project scope (requirements).

These variables (as well as the possible ways of measuring them) have been
discussed in detail in the book by Prof. Orlowski [OK12] and in previous arti-
cles by the authors [ZS13]; however, for the purposes of this chapter, these var-
iables have been used as input parameters for one specific type of decision con-
cerning the selection of the project management method. The decision regarding
the selection of the project management method is one of the fundamental deci-
sions made by managers. The choice of method determines the future course of
the project. In general, these methods are divided into classic and agile. The
classic ones are characterized by a significant role in planning processes and by
central decision-making (done by the manager), while the agile ones are based
on self-organizing teams focused on interaction, and dispersed (within the
team), making decisions related to carrying out individual tasks. Hence, the
decision of a project manager in terms of the management method of an IT pro-
ject implies subsequent decisions regarding the division of labour, the way of
reporting and measuring the effects, etc.

This chapter aims at presenting the possibility of recording project experi-
ences based exactly on such decisions. In addition, for the purposes of this
chapter, a certain simplification was adopted, assuming that the project decision
regarding the method of project management and implementation is clear (i.e.,
the manager chooses a particular method). In reality, managers often use best
project management practices derived from more than one method, adapting
them to their projects. Best practices most commonly used by project managers
primarily come from one of the aforementioned groups, i.e. classic or agile
methods. This simplification results from the fact that this is the first stage of
research on recording project experiences in the form of SOEKS. Ultimately,
the intention of the authors is to record all kinds of project experiences (not just
those relating to method selection) and to study their impact on the course of the
project in order to then provide the possibility of using these experiences.

58 Software Engineering from Research and Practice Perspectives

3.1.2 Relationships between project decisions and experiences

Project decisions may concern particular elements of the project environ-
ment (such as the assignment of tasks to people) and may relate to a higher level
on which to manage the entire project (as in the case of the previously men-
tioned problem of selecting a method for the project).

Due to the fact that projects are inherently unique, it should be considered
whether decisions made in one project can be significant for future projects. It
would seem that due to the uniqueness of projects such action is not possible. If,
however, it is taken into account that it is possible to isolate elements of the
project environment - common for many projects (team, client requirements,
information clarity level) - then the record of experiences, which shows the
impact of these elements on the ultimate success of the project, can be a basis
for making new decisions in new projects.

Given that the measure of the success of an IT project is still understood as
its realization within the classical boundary conditions such as schedule, budget
and scope, one can talk about the final evaluation of the impact of decisions
made on this success. Having distinct variables (client maturity, team, entropy)
and knowing what decision has been made under these conditions regarding the
selection of project management methods, it is possible to talk about some ex-
perience to be used in future projects. However, this requires verifying whether,
with the given values of the variables related to maturity and with that particular
decision on the choice of the method, the project was a success. Then such pro-
ject decisions can be recognized as experiences on the basis of which other pro-
ject managers will be able to take further decisions on new projects. If a project
manager is able to assess whether, with a specified level of project team maturi-
ty and client maturity, they applied a particular method of project management
and the project was a success, then this decision will be regarded as a valuable
experience for managers whose teams and clients exhibit similar levels of ma-
turity.

It should be noted that one of the main characteristics of a good manager is
the manager’s intuition [T04] allowing for the right decisions to be made, which
will probably never be replaced by an intelligent inference system. However,
the recording and evaluation of decisions and experience resulting from project
management can assist managers in making subsequent decisions in other pro-
jects. There are many concepts of knowledge-based systems, but they seem to
be insufficient in the face of the project decisions issue, where experience also
(or perhaps - most of all) plays a big role.

Management of IT project experiences on the basis of SOEKS 59

In this context the authors became interested in one of the newly developed

methods, in management, of recording experiences (of any kind) - SOEKS. The
purpose of this chapter is the adaptation of the assumptions of the SOEKS con-
cept to the issues related to the management of IT projects. The next chapter
presents the main assumptions of the concept.

3.2 SOEKS, a form of recording decision-making experiences

The experience of IT project managers in terms of their everyday decisions
indicates that many of those decisions are uncertain in nature. Managers often
rely on knowledge which is sometimes incomplete, or inaccurate. The conse-
quence of such a state is obviously an increased risk of project failure. Un-
doubtedly, a support for decision-making with the help of intelligent solutions
based on knowledge would be needed, which is the content of previous studies
by the authors.

Classic solutions based on knowledge-based systems implement support for
management decisions mostly relying on a knowledge base, which consists of
facts and rules in the form of implications relating premises to conclusions. This
follows directly from the assumptions of knowledge engineering, a branch of
science which seeks to present intelligent human behavior through the integra-
tion of knowledge with computer inference systems in order to solve complex
problems [SS07]. The concept of knowledge engineering has always involved
attempts to imitate certain human behaviors such as learning, inference and
prediction on the basis of available knowledge or obtained experience [CS13].

Classic knowledge-based systems (decision support systems, expert systems)
are usually designed so that the user can achieve the result of a previously pro-
grammed inference based on gathered facts and rules. So far these tools have
not provided the possibility of recording individual decisions which result from
the application of this knowledge. The answer to this problem is to be the con-
cept of Decisional DNA (DDNA), and in particular its main component, the so-
called Set of Experiences, i.e. SOEKS.

SOEKS - Set of Experience Knowledge Structure can be described as a tool
based on experience which is assumed to be capable of collecting and managing
knowledge stored in a formal way. In particular, this refers to the knowledge of
so-called decisional events, namely all the individual decisions which occur
during the execution of a project and for which it is possible to specify both the
premises and conclusions resulting from the adopted rules the decisions were
based on.

60 Software Engineering from Research and Practice Perspectives

The concept of SOEKS was thoroughly described in 2007 in the doctoral

thesis of Cesar Sanin, PhD and it is part of the research on the so-called
Knowledge Supply Chain System carried out at the University of Newcastle
(Australia).

The assumptions that underpin this research say that managers facing daily
decisional challenges rely largely on experience, and it is experience - not
knowledge alone - that provides the basis for subsequent decisions. Therefore, if
any decision was saved in a coherent and formal way, it could provide a pro-
cessing basis for any inference engine. The SOEKS documentation is essential-
ly the specifications of such a coherent structure.

Each SOEKS may consist of four components, as follows:
⎯ variables (V) - are the representation of knowledge in the form of at-

tribute-value pairs;
⎯ rules (R) - are the record of inferences, they associate premises with the

specific decisions which result from them;
⎯ functions (F) - describe the relationship between variables;
⎯ constraints (C) - are also a record of the relationship between variables

in order to limit the possible solutions of decisional problems.

The SOEKS components and their mutual relationships are shown in Fig. 3.1.

VARIABLES

RULES

CONSTRAINTSFUNCTIONS

YX

F2

F1 C1

C2

R3R2R1

 Figure 3.1. The SOEKS structure - four basic components and their mutual relationships

What confirms the validity of the approach represented by SOEKS are the
various applications of this form of recording experiences in various fields of
human activity, including medicine (the gathering and management of medical
diagnoses to support everyday hospital practice) and transport (the analysis and
selection of optimal rail routes). These implementations, however, show that

Management of IT project experiences on the basis of SOEKS 61

SOEKS works well mainly for domains in which the data regarding decisions is
purely quantitative. The issue addressed by the authors of this study (the analy-
sis of decisions in IT projects) unfortunately transgresses such a framework and
also becomes a challenge for research on the applicability of SOEKS in this
domain [SS09].

SOEKS is just a concept of recording knowledge, limited exclusively to the
description of a structure. The authors do not promote any particular data format
or methods of generating data. The only form of supporting the concept in terms
of tools was initially a class set for Java language constituting API SOEKS. It is
worth noting that for better management of gathered knowledge and experienc-
es in SOEKS structures, it was decided that a dedicated tool - a decisional DNA
manager, should be created [CT12].

Figure 3.2. DDNA Manager.

A DDNA Manager (Decisional DNA Manager) is a unique application

which allows the easy construction of single decision-making structures, in par-
ticular entering, editing and storing the records of the decision-making experi-
ence, which can also be visualized (see Figure 3.2). The DDNA Manager was
implemented in Java with the use of the aforementioned API SOEKS. As a re-
sult, in addition to manual operations, it also allows for integration with external
solutions.

The authors decided to use the described possibilities offered by the concept
of recording experiences to achieve the objective of their research, namely, the
construction of a system to support project decisions made by IT project man-
agers, through applying experiences from a variety of sources.

62 Software Engineering from Research and Practice Perspectives

The following question can be raised: will the SOEKS idea be more effective

than classic rule-based expert systems? This is very early stage of this project,
therefore nothing can be proved for sure and is based mostly on assumptions
and previous experiences. The authors have tried to accomplish the same goal –
decision support for IT project managers – several times using various ap-
proaches. They were participating in a few projects run by international teams
of researches and their results and gained experiences has always proved that
something more than ‘pure’ knowledge must be stored and processes for reuse
by project managers. Initial feasibility study gives hope (but it is not a proof
yet) that SOEKS are the exact answers to this problem.

The following chapter elaborates on the assumptions adopted for such a pro-
ject, clarifies the objectives and presents the course of the carried out experi-
ment.

3.2.1 Using SOEKS to represent project decisions

Is the SOEKS concept adequate to represent project decisions? The past ex-
perience of the Team justifies the need to answer this question. The constantly
growing number of IT projects and the considerable proportion of those which
fail prove the aforementioned thesis about the growing complexity of the envi-
ronment in which decision makers operate. This, in turn, was an indication for
the authors to undertake research in this direction. The main goal was to build a
knowledge-based intelligent solution for supporting decision-making in the IT
organization. The observations and experiments conducted over the years show
that the classic system based on knowledge (stored as a combination of rules
and facts) is not sufficient [CO11, SO07]. Projects in this sector have a very
specific and individual character. It is not possible to build a completely objec-
tive knowledge base for the needs of such a solution. Therefore, it seems neces-
sary to collect knowledge from many different sources, in particular - from var-
ious Project Managers from various projects executed by them and concerning
various aspects of decision-making. It is thus necessary to collect and process
not so much knowledge but experiences, which must be continually assessed.

In spite of such diversity, it is necessary to distinguish certain common as-
pects - perhaps at the expense of certain simplifications. The analysis of some
cases led the authors to the conclusions depicted in Figure 3.3. Managing IT
projects involves the simultaneous management of several different aspects of
those projects. These include: cooperation with experts, the maturity of the pro-
ject team, the relationship with the client, the selection of tools and methods of

Management of IT project experiences on the basis of SOEKS 63

project management, as well as applying the developed best practices. These
aspects should be treated as decision variables.

Figure 3.3. IT project structure.

A research project entitled "Smart Modeling Approach of IT Project Man-

agement for Small and Medium Companies" has become the framework for
research based on the above premises. It is carried out by three partners: the
University of Newcastle (Australia), the VicomTech Institute (Spain) and the
Technical University of Gdansk (Poland), based on funding from European
funds allocated to the FP7-PEOPLE-2009-IRSES program. The main objective
of the project is the development of a support system for decision-making in IT
projects with the use of SOEKS as a means of formalizing knowledge and expe-
riences.

For the needs of the project, the following assumptions about its essence
were made:

⎯ In the basic version, the system will support the most crucial decision of
the IT project manager - selecting the methodology for conducting the
project (the output variable of the system - output). The set of available
methodologies/frameworks will be closed at the initial stage. Possible
values include: PRINCE2 (typical heavy method of management level),
RUP (typical heavy method for development teams), XP (example of
agile method), Scrum (agile method/framework).

64 Software Engineering from Research and Practice Perspectives

⎯ The choice of methodology will depend on four values (input variables

- input): the maturity of the project team, (lack of) order (entropy) of the
project, the client’s maturity and their suitability to the specific nature
of the project.

The authors are aware that such distinction of methods is rather simplified
and may be treated as disputable. There are opinions that RUP is not heavy
method (e.g. because not all of its artifacts are strongly required). Also distinc-
tion PRINCE2 vs. Scrum is not that clear. Both can be used concurrently and
support each another; they are compatible and project manager may not to be
forced to chose one of the other. Thus, according to the authors such decision
should be interpreted as the answer to the question whether given project re-
quired high-level management (then PRINCE2 is the best choice) or the focus
on development is the most critical (Scrum is recommended so).

From the point of view of the possibilities offered by SOEKS, it was as-
sumed that:

⎯ At the initial stage of the project, variables and rules will be used to
record individual experiences/decisions; functionalities and limitations
will not be taken into account.

⎯ Apart from the above-mentioned input variables (representing the body
of rules) and the output variable (conclusion-decision), additional varia-
bles were used such as the ID of the project (many decisions are al-
lowed for one project), the ID of the expert entering data into the data-
base (many decisions can be obtained from one expert), the comment of
the expert and the evaluation of the decision taken (available after its
implementation).

Table 3.1. Variables and rules applied in SOEKS.

Variables Rules

Team Maturity (input) IF
 Team Maturity = <value>
 AND
 Project Entropy = <value>
 AND
 Client Suitability = <value>
 AND
 Client Match = <value>

 THEN
 PM Method = <value>

Project Entropy (input)
Client Suitability (input)
Client Match (input)
PM Method (output)
Project ID (aux)
Expert ID (aux)
Comment (aux)
Success Rate (aux)

Management of IT project experiences on the basis of SOEKS 65

It was assumed that one SOEKS is a representation of one project decision,

i.e. the experience acquired from one Project Manager regarding one given pro-
ject. Each initial decision will therefore be written as a set of variables and a
single rule. The only variable which initially (during the construction phase of
SOEKS) will not be assigned a value is the Success Rate, since the evaluation of
the decision will be made after a specified time. Before the project is initiated,
the expert enters their first experience - a decision regarding the current meth-
odology of the project. This is called an incomplete experience.

Examples of rules have been presented below.

Example rule #1:

If (
CLASS ITProject with the PROPERTY teamMaturity EQUALS TO initial
AND
CLASS ITProject with the PROPERTY projectEntrophy EQUALS TO large
AND
CLASS ITProject with the PROPERTY clientSuitability EQUALS TO no
AND
CLASS ITProject with the PROPERTY clientMatch EQUALS TO yes
)
then
(CLASS ITProject with the PROPERTY methodName EQUALS TO PRINCE2)

Example rule #2:

If (
CLASS ITProject with the PROPERTY teamMaturity EQUALS TO initial
AND
CLASS ITProject with the PROPERTY projectEntrophy EQUALS TO large
AND
CLASS ITProject with the PROPERTY clientSuitability EQUALS TO no
AND
CLASS ITProject with the PROPERTY clientMatch EQUALS TO yes
)
then
(CLASS ITProject with the PROPERTY methodName EQUALS TO Scrum)

It is assumed that in the course of the project, or after its completion, the expert can
perform the following activities:

⎯ evaluate their initial decision (fill in the value of the Success Rate vari-
able, due to which incomplete experiences will change their status to
complete experiences),

⎯ enter subsequent experiences regarding the carried out project.

66 Software Engineering from Research and Practice Perspectives

Figure 3.4. Three main use cases of the proposed solution.

In the first version of the proposed solution, apart from the expert, the au-

thors see a second actor - the user (see Figure 3.4), who will be able to apply the
basic functionality of the system, namely ask a question to the SOEKS database,
describing the realities of their project (i.e., giving appropriate values to the
input variables). The system will return the experiences of other experts includ-
ed in the base, categorizing them in terms of matching.

3.3 Implementation

 The concept of recording project experiences, presented above, regarding
decisions on the selection of project management methods can be applied as
long as there is access to a preview of experiences from earlier projects. Hence,
the authors believe that the best way of applying the SOEKS idea is by imple-
menting it in the tools supporting project management. This is due to the fact
that it is common practice for project managers to use specific tools to assist in
the management of a project. The tools used by managers allow such tasks as
defining teams, defining workflows or creating project documentation.

3.3.1 Applying SOEKS in project management tools

 Some of the popular project management tools (such as IBM Rational
Team Concert) have process templates customized for projects carried out both
according to classic approaches, as well as agile ones. In this way, project man-
agers can trace the progress of projects in terms of the chosen method of man-
agement. Such an approach is consistent with the pre-set assumptions that man-

Expert
(knowledge provider)

Project Manager
(knowledge user)

Add rule

Evaluate your rule

Query the KB

*

*

*

*

*

*

SOEKS System

Management of IT project experiences on the basis of SOEKS 67

agers depend on some initial parameters (maturity), to decide how to conduct
the project (project management method). The inclusion of such a decision in a
tool, saving it and then evaluating its effect can be a valuable experience bene-
fiting future projects. Hence, the authors are exploring the possibility of imple-
menting the SOEKS concept in an exemplary project management tool so that
the experience of previous projects can be fully used in future projects.

 With this approach, it is possible to gather decisions and their consequences
(i.e. experiences) for subsequent processing for future projects. This approach
also gives managers making decisions during subsequent projects a reference
point by showing the consequences of certain decisions.

3.3.2 Suggested implementation – further steps

In the first step, the authors selected a tool with the ability to define projects
according to classic and agile principles.

Figure 3.5. Diagram of relationships and the flow of information
in the RTC-plugin SOEKS system.

In the next step, there are plans to verify to what extent the decisions record-
ed in the tool will be converted to a record compliant with SOEKS.

Then, the mechanism of processing experiences will be applied, regarding
also the way the experiences are read by managers making decisions in subse-
quent projects.

In the final step, a plug-in for a selected tool will be built which will form a
kind of expert system allowing for a method of project management to be sug-
gested on the basis of experiences.

68 Software Engineering from Research and Practice Perspectives

3.4 Conclusion

The approach presented in this chapter aims at streamlining decision-making
processes in IT projects. It is extremely valuable in such processes to consider
the experiences and knowledge created (acquired) during the execution of pre-
vious projects. Firstly, the authors verified how far the SOEKS concept, popular
in many industries (medicine, transport), may be useful to record a strictly man-
agerial experience. After concluding the analysis with positive findings (con-
sulted with the authors of the SOEKS concept) it was established that the expe-
riences should be recorded constantly in the course of the project. Hence, the
authors undertook the project to show the possibility of a continuous record of
decisions (project experiences) by implementing the SOEKS concept in an IT
tool for supporting project management.

The following question can be raised – would such approach be suitable for
each project manager and every IT project? Yes, that is the assumption. But it
must be taken into consideration that this is additional job which costs time and
energy. Gathering knowledge and experience in small project (e.g. a few people
involved) may be rather easy for single PM. However, the process of transform-
ing knowledge to SOEKS within big projects will require cooperation of vari-
ous roles playing part – system architects, team leaders, domain experts and
even programmers (regardless which methods will be used). That is why we
can say that the whole concept of SOEKS may be support for the larger group
of people involved in project.

What are the next steps? There are plans to develop mechanisms to process
project experiences stored in the form of SOEKS in such a way that managers
undertaking the realization of new projects would automatically be able (using a
dedicated plug-in) to obtain guidelines stating which mistakes to avoid, and
which methods (and best practices) of management should be selected for a
given project.

The research discussed in the chapter is funded by the FP7 Marie Curie International
Research Staff Exchange Scheme (FP7-PEOPLE-2009-IRSES); project name: Smart
multipurpose knowledge administration environment for intelligent decision support
systems development ‘SASD’; subtask name: Smart Modeling Approach of IT Project
Management for Small and Medium Companies (GUT, Poland).

Management of IT project experiences on the basis of SOEKS 69

References

[PM08] PMI. A Guide to the Project Management Body of Knowledge, Fourth Edition, 2008.
[CK13] Adam Czarnecki, Liliana Klich and Cezary Orłowski. Simulation of the IT Service and

Project Management Environment, vol. LXII, issue 1/2013, 161-180, 2013.
[CH12] The CHAOS Manifesto, The Standish Group, 2012.
[OK12] Cezary Orłowski and Zdzisław Kowalczuk, Modelowanie procesów zarządzania tech-

nologiami informatycznymi, 2012.
[ZS13] Artur Ziółkowski and Tomasz Sitek. Projekt-czynnik-decyzja. Badanie czynników

decyzyjnych w projektach informatycznych i ich wpływu na powodzenie projektów.
Zarządzanie projektami i modelowanie procesów, 49-61, 2013.

[T04] Andrzej Tubielewicz. Zarządzanie strategiczne w biznesie międzynarodowym, 2004.
[SS07] Cesar Sanin, Edward Szczerbicki and Carlos Toro. An OWL Ontology of Set of Experi-

ence Knowledge Structure. Journal of Universal Computer Science, vol. 13, Issue 2,
209-223, 2007.

[CS13] Adam Czarnecki and Tomasz Sitek. Ontologies vs. Rules — Comparison of Methods of
Knowledge Representation Based on the Example of IT Services Management. Infor-
mation Systems Architecture and Technology: Intelligent Information Systems,
Knowledge Discovery, Big Data and High Performance Computing, 99-109, 2013.

[SS09] Cesar Sanin and Edward Szczerbicki. Experience-based Knowledge Representation:
SOEKS. Cybernetics and Systems: An International Journal, vol. 40, 99-122, 2009.

[CT12] Cezar Sanín, Carlos Toro, Haoxi Zhang, Eider Sanchez, Edward Szczerbicki, Eduardo
Carrasco, Wang Peng and Leonardo Mancilla-Amaya. Decisional DNA: A multi-
technology shareable knowledge structure for decisional experience. Neurocomputing,
vol. 88, 42–53, 2012.

[CO11] Adam Czarnecki and Cezary Orłowski. Application of Ontology in the ITIL Domain.
Information Systems Architecture and Technology : Service Oriented Networked Sys-
tems, 99-108, 2011.

[SO07] Tomasz Sitek and Cezary Orłowski. Evaluation of information technologies - concept of
using intelligent systems. In: Information systems architecture and technology: applica-
tion of information technologies in management systems, 217-224, 2007.

PART II
REQUIREMENTS ENGINEERING

Chapter 4

Functional safety, traceability, and Open Services

There are clear business reasons why the achievement of the functionality of more and more
industrial products is definitely shifted to the use of embedded software replacing earlier hard-
ware solutions. It is commonly known that the elicitation, identification, analysis, specification,
modeling, validation, and management of the requirements in general and of functional safety
requirements in particular is a demanding process with special implications for the case of soft-
ware also reflected in related general and industry specific standards. This chapter gives a brief
overview of standard approaches to functional safety with examples from the medical domain. It
is highlighted that one of the key requirements of all approaches is traceability. The emerging
Open Services for Lifecycle Collaboration (OSLC) technology, exploiting the architecture of the
World Wide Web, is shown to have a determining impact on the future of the satisfaction of trace-
ability requirements of safety-critical software development among others.

4.1 Functional Safety

It is unfortunate but also unquestionable that there is a risk that any product,
with embedded software or not, causes harm to the health of people directly or
indirectly as a result of damage to property or to the environment. The risk is
usually defined as the product of the probability of occurrence and of the severi-
ty of the harm. There are of course products whose risk of causing harm is ac-
ceptable in a given context, based on the current values of society (IEC 61508).
Safety-critical systems, on the other hand, have so high risk of causing harm
that this risk must be reduced to a level “as low as reasonably practicable”
(ALARP) required by ethics and regulatory regimes. Functional safety is the
freedom from unacceptable risk regarding the functionality of the system.

The growing expectations regarding software components of safety-critical
systems is a consequence of the changing impact of software on the consumer
value of electrical, electronic or programmable electronic (E/E/PE) systems
(IEC 61508) which was earlier fundamentally determined by hardware compo-
nents with software primarily used for algorithmic tasks. Increasingly, embed-
ded software is creating competitive differentiation for manufacturers [Ba11] in
many industries including Automation, Aerospace, Automotive, Rail, Medical,
Machinery, Nuclear, Process Automation and Consumer Products.

Software is perceived by business as more capable to be adapted to fluid re-
quirements changes than hardware. In the software engineering discipline, it has
for long been recognized however that the only way to achieve high reliability is
to follow appropriately defined processes [BT95] [BT99] [BM00]. The neces-
sary processes are summarized in international standards (ISO/IEC 12207 for

74 Software Engineering from Research and Practice Perspectives

software, ISO/IEC 15288 for systems), while their assessment and improvement
is facilitated by the ISO/IEC 15504 series of standards (SPICE) currently evolv-
ing into the ISO/IEC 330xx series.

Regarding medical systems for example, the Association for the Advance-
ment of Medical Instrumentation (AAMI) software committee reviewed
ISO/IEC 12207:1995 and identified a number of shortcomings due to the fact
that it was a generic standard. As a result a decision was taken to create a new
standard which was domain specific to medical device software development,
and in 2006, the new standard IEC 62304:2006 Medical device software - Soft-
ware life cycle processes, was released. IEC 62304:2006 is approved today by
the FDA (U.S. Food and Drug Administration) and is harmonized with the Eu-
ropean MDD (Medical Device Directive). The quality management standard
ISO 13485:2003, and the risk management standard ISO/IEC 14971:2007 are
considered to be aligned with IEC 62304:2006 and their relationship is docu-
mented in IEC 62304:2006 itself. An extensive revision of the ISO/IEC 12207
standard took place in its release in 2008. As a result, all derived standards,
including IEC 62304:2006, are under review.

To facilitate the assessment and improvement of software development pro-
cesses for medical devices, the MediSPICE model based upon ISO/IEC 15504-
5 was developed and has been renamed to MDevSPICE® in 2014 [LCMC14],
[MCCL14]. The Process Reference Model (PRM) of MDevSPICE® will enable
the processes in the new release of IEC 62304 to be comparable with those of
ISO 12207:2008 [CMC13]. The above points give just a glimpse of the changes
heavily affecting software developers in the medical devices domain.

Instead of containing actual recommendations of techniques, tools and meth-
ods for software development, IEC 62304 encourages the use of the more gen-
eral IEC 61508-3:2010 Functional Safety of Electrical/Electronic/ Programma-
ble Electronic Safety-related Systems – Part 3: Software requirements as a
source for good software methods, techniques and tools.

4.2 Traceability

Traceability and even bilateral (ISO/IEC 15504) or bidirectional (CMMI)
traceability are key notions of all process assessment and improvement models.
[MCCS12] reports about an extensive literature review which classifies the
models involving software traceability requirements according to the scope of
the model, that is:

⎯ Generic software development and traceability including CMMI and
ISO/IEC 15504.

Functional safety, traceability, and Open Services 75

⎯ Safety-critical software development and traceability including DO-

178B (Software Considerations in Airborne Systems and Equipment
Certification) and Automotive SPICE.

⎯ Domain specific software traceability requirements which, in the case
of medical devices for example, include IEC 62304 (Medical Device
Software – Software Life Cycle Processes), MDD 93/42/EEC (Europe-
an Council. Council directive concerning medical devices), Amendment
(2007/47/EC), US FDA Center for Devices and Radiological Health
Guidances, ISO 14971:2007. (Medical Devices – Application of Risk
Management to Medical Devices), IEC/TR 80002–1:2009 (Medical
Device Software Part 1: Guidance on the Application of ISO 14971 to
Medical Device Software), and ISO 13485:2003 (Medical Devices –
Quality Management Systems – Requirements for Regulatory Purposes)

Let us first consider the definitions of traceability in the following broadly

known models.
⎯ CMMI® for Development, Version 1.3 November 2010

o Traceability: A discernable association among two or more log-
ical entities such as requirements, system elements, verifica-
tions, or tasks.

o Bidirectional traceability: An association among two or more
logical entities that is discernable in either direction (i.e., to and
from an entity).

o Requirements traceability: A discernable association between
requirements and related requirements, implementations, and
verifications.

⎯ Automotive SPICE® Process Assessment Model, v2.5 2010-05-10 us-
ing the definition originally adopted in IEEE Std 610.12-1990 Standard
Glossary of Software Engineering Terminology

o Traceability: The degree to which a relationship can be estab-
lished between two or more products of the development pro-
cess, especially products having a predecessor-successor or
master-subordinate relationship to one another.

Automotive SPICE® systematically requires bilateral traceability in all of the
following engineering base practices:

⎯ ENG.1 Requirements elicitation
⎯ ENG.2 System requirements analysis
⎯ ENG.3 System architectural design

76 Software Engineering from Research and Practice Perspectives

⎯ ENG.4 Software requirements analysis
⎯ ENG.5 Software design
⎯ ENG.6 Software construction
⎯ ENG.7 Software integration test
⎯ ENG.8 Software testing
⎯ ENG.9 System integration test
⎯ ENG.10 System testing

It is important to highlight that traceability has been considered as a key is-
sue by the agile community as well. Scott Ambler, one of the key personalities
of the agile movement, states in 1999 that “My experience shows that a mature
approach to requirements traceability is often a key distinguisher between or-
ganizations that are successful at developing software and those that aren’t.
Choosing to succeed is often the most difficult choice you’ll ever make—
choosing to trace requirements on your next software project is part of choosing
to succeed.” [A99]

Scott Ambler’s advice in 2014 [A14]:
“Think very carefully before investing in a requirements traceability matrix, or
in full lifecycle traceability in general, where the traceability information is
manually maintained.”
He also describes rational arguments which support that maintaining traceability
information makes sense in the following situations:

⎯ Automated tooling support exists
⎯ Complex domains
⎯ Large teams or geographically distributed teams
⎯ Regulatory compliance

The already cited IEC 61508 standard lists forward traceability as well as
backward traceability as recommended and even highly recommended at the
safety integrity levels 3 and 4 (SIL 3 and 4). The safety integrity of a system can
be defined as "the probability (likelihood) of a safety-related system performing
the required safety function under all the stated conditions within a stated period
of time„. Safety integrity levels are defined by probability (required likelihood)
of failure which is the inverse of safety integrity.

In IEC 61508, “highly recommended” means that if the technique or meas-
ure is not used then it is the rationale behind not using it which has to be care-
fully demonstrated during safety planning and assessment.

Unfortunately, traceability as well as the actual assessment of the satisfaction
of the crucial traceability requirements is difficult to achieve with the heteroge-

Functional safety, traceability, and Open Services 77

neous variety of application lifecycle management (ALM) tools companies are
faced with [PRZ09], [MD12]. Using a manual approach, assessors can only
recur to sampling which has ultimate weaknesses:

⎯ Traceability is basically restricted to the closed ALM system. Represen-
tational State Transfer (REST) APIs are mostly available for providing
internal data. However, a standardized open form of exchange is only
made possible by the below described OSLC approach.

⎯ Useful traceability reports can be generated, but they are static while
requirements and identified defects are very dynamically changing arti-
facts, and may even originate from outside the ALM system.

⎯ Assessors and users may be easily confused by the complexity of the set
of widgets, such as buttons, text fields, tabs, and links which are pro-
vided to access and edit all properties of resources at any time.

⎯ Assessors and users need to reach destinations such as web pages and
views by clicking many links and tabs whose understanding is not es-
sential for the assessment.

4.3 Open Services

Considering all of the above discussion, the need for the automation of as-
sessing and maintaining traceability is imminent. It is this automation to which
the Open Services for Lifecycle Collaboration (OSLC) [OSLC08] initiative
opens the way.

OSLC is the recently formed cross-industry initiative aiming to define stand-
ards for compatibility of software lifecycle tools. Its aim is to make it easy and
practical to integrate software used for development, deployment, and monitor-
ing applications. This aim seems to be too obvious and overly ambitious at the
same time. However, despite its relatively short history starting in 2008, OSLC
is the only potential approach to achieve these aims at a universal level, and is
already widely supported by industry. The OSLC aim is of course of utmost
significance in the case of the safety-critical systems. The unprecedented poten-
tial of the OSLC approach is based on its foundation on the architecture of the
World Wide Web unquestionably proven to be powerful and scalable and on the
generally accepted software engineering principle to always focus first on the
simplest possible things that will work.

The elementary concepts and rules are defined in the OSLC Core
Specification [OCS13] which sets out the common features that every OSLC
Service is expected to support using the terminology and generally accepted

78 Software Engineering from Research and Practice Perspectives

approaches of the World Wide Web Consortium (W3C). One of the key ap-
proaches is Linked Data being the primary technology leading to the Semantic
Web which is defined by W3C as providing a common framework that allows
data to be shared and reused across application, enterprise, and community
boundaries. And formulated at the most abstract level, this is the exact goal
OSLC intends to achieve in the interest of full traceability and interoperability
in the software lifecycle. OSLC is having a determining cross-fertilizing effect
on the progress of the more general purpose Semantic Web itself.

The OSLC Core Specification is actually the core on which all lifecycle ele-
ment (domain) specifications must be built upon. Examples of already defined
OSLC Specifications include:

⎯ Architecture Management
⎯ Asset Management
⎯ Automation
⎯ Change Management
⎯ Quality Management
⎯ Requirements Management

Regarding for example the Requirements Management Specification whose
version 2.0 was finalized in September 2012 [ORM12], it builds of course on
the Core, briefly introduced above, to define the resource types, properties and
operations to be supported by any OSLC Requirements Definition and Man-
agement (OSLC-RM) provider. Examples of possible OSLC Resources include
requirements, change requests, defects, test cases and any application lifecycle
management or product lifecycle management artifacts. Resource types are
defined by the properties that are allowed and required in the resource. In addi-
tion to the Core resource types (e.g. Service, Query Capability, Dialog, etc...),
the minimal set of special Requirements Management resource types simply
consists of:

⎯ Requirements
⎯ Requirements Collections.

The properties defined in the OSLC Requirements Management
Specification describe these resource types and the relationships between them
and all other resources. The relationship properties describe for example that

⎯ the requirement is elaborated by a use case
⎯ the requirement is specified by a model element
⎯ the requirement is affected by another resource, such as a defect or issue
⎯ another resource, such as a change request tracks the requirement

Functional safety, traceability, and Open Services 79

⎯ another resource, such as a change request implements the requirement
⎯ another resource, such as a test case validates the requirement
⎯ the requirement is decomposed into a collection of requirements
⎯ the requirement is constrained by another requirement

Regarding the Change Management Specification, its version 3.0 is under
development in 2014, and builds of course on the Core, briefly mentioned
above, to define the resource types, properties and operations to be supported by
any OSLC Change Management (OSLC CM) provider.

Examples of possible OSLC CM Resources include defect, enhancement,
task, bug, activity, and any application lifecycle management or product lifecy-
cle management artifacts. Resource types are defined by the properties that are
allowed and required in the resource.

The properties defined in the OSLC Change Management Specification de-
scribe these resource types and the relationships between them and all other
resources. The relationship properties describe in most general terms for exam-
ple that

⎯ the change request affects a plan item
⎯ the change request is affected by a reported defect
⎯ the change request tracks the associated Requirement
⎯ the change request implements associated Requirement
⎯ the change request affects a Requirement

OSLC is currently at the technology trigger stage along its hype cycle
[FR08] [B09], it is already clear however that it is the approach which has the
potential to have a determining impact on the future of the satisfaction of the
traceability requirements of safety-critical software development among others.

Full traceability of a requirement throughout the development chain and
even the entire supply chain is also a major focus point of the recently complet-
ed authoritative European CESAR project (Cost-Efficient Methods and Process-
es for Safety Relevant Embedded Systems) which adopted interoperability
technologies proposed by the OSLC initiative.

Another important European project, completed in 2013 and exploiting
OSLC, is iFEST (industrial Framework for Embedded Systems Tools).

4.4 Conclusion

The chapter has shown that all approaches to achieving functional safety re-
quire the establishment of bilateral traceability between development artifacts.
Unfortunately, the manual or even tool supported creation and maintenance of

80 Software Engineering from Research and Practice Perspectives

traceability is currently difficult and expensive. The emerging industry support-
ed OSLC initiative has been shown to have a determining impact on the future
of the satisfaction of traceability requirements of safety-critical software devel-
opment among others.

References

[A14] S. Ambler, Agile Requirements Best Practices, 2014.
http://www.agilemodeling.com/essays/agileRequirementsBestPractices.htm
(accessed: 15/08/2014).

[A99] S. Ambler, Tracing Your Design. Dr.Dobb's Journal: The World of Software
Development, 1999.

[B09] M. Biro. The Software Process Improvement Hype Cycle. Invited contribution to
the Monograph: Experiences and Advances in Software Quality (Guest editors:
D.Dalcher, L. Fernndez-Sanz) CEPIS UPGRADE Vol. X (5) pp. 14-20 (2009)
http://www.cepis.org/files/cepisupgrade/issue%20V-2009-fullissue.pdf
(accessed: 15/08/2014)

[B14] M. Biro. Open services for software process compliance engineering. In V.
Geffert, B. Preneel, B. Rovan, J. Štuller, & A. Tjoa (Eds.) SOFSEM 2014: Theory
and Practice of Computer Science, vol. 8327 of Lecture Notes in Computer Sci-
ence, (pp. 1–6). Springer International Publishing. http://dx.doi.org/10.1007/978-
3-319-04298-5_1
 (accessed: 15/08/2014)

[Ba11] M. Bakal. Challenges and opportunities for the medical device industry. IBM
Software, Life Sciences, Thought Leadership White Paper, (2011)

[BM00] M. Biró, R. Messnarz R. Key success factors for business based improvement.
Sofware Quality Professional 2:(2) pp. 20-31, 2000.
http://asq.org/pub/sqp/past/vol2_issue2/biro.html (accessed: 15/08/2014)

[BR98] M. Biró, T. Remzső. Business motivations for software process improvement.
ERCIM NEWS 32: pp. 40-41, 1998.
http://www.ercim.eu/publication/Ercim_News/enw32/biro.html
(accessed: 15/08/2014)

[BT95] M. Biró, P. Turchányi. Software Process Assessment and Improvement from a
Decision Making Perspective. ERCIM NEWS 23: pp. 11-12, 1995.
http://www.ercim.eu/publication/Ercim_News/enw23/sq-sztaki.html
(accessed: 15/08/2014)

[BT99] M. Biró, C. Tully. The software process in the context of business goals and
performance. In: Messnarz R, Tully C (ed.) Better Software Practice for Business
Benefit: Principles and Experience. 409 p. Washington; Paris; Tokyo: Wiley -
IEEE Press, 1999. pp. 15-28. (ISBN: 978-0-7695-0049-2)

[CMC13] V. Casey, F. McCaffery. The development and current status of MediSPICE. In T.
Woronowicz, T. Rout, R. OConnor, A. Dorling (Eds.) Software Process Im-
provement and Capability Determination, vol. 349 of Communications in Com-
puter and Information Science, (pp. 4960). Springer Berlin Heidelberg, 2013.

[FR08] J. Fenn, M. Raskino. Mastering the Hype Cycle. Harvard Business Press, 2008.

Functional safety, traceability, and Open Services 81

[LCMC14] M. Lepmets, P. Clarke, F. McCaffery, A. Finnegan, A. Dorling. Development of a

Process Assessment Model for Medical Device Software Development. In: indus-
trial proceedings of the 21st European Conference on Systems, Software and
Services Process Improvement (EuroSPI 2014), 25-27 June, Luxembourg. (2014)

[MCCL14] F. McCaffery, P. Clarke, M. Lepmets. Bringing Medical Device Software Devel-
opment Standards into a single model - MDevSPICE. To appear in: Irish Medi-
cines Board Medical Devices Newsletter Vol 1(40). (2014)

[MCCS12] F. McCaffery, V. Casey, M.S. Sivakumar, G. Coleman, P. Donnelly, J. Burton.
Medical device software traceability. In J. Cleland-Huang, O. Gotel, & A. Zisman
(Eds.) Software and Systems Traceability, (pp. 321-339). Springer London, 2012.
http://dx.doi.org/10.1007/978-1-4471-2239-5_15 (accessed: 15/08/2014)

[MD12] T.E. Murphy, J. Duggan. Magic Quadrant for Application Life Cycle Manage-
ment. Gartner, 2012.

[OCS13] Open Services for Lifecycle Collaboration Core Specification Version 2.0. (2013)
http://open-services.net/bin/view/Main/OslcCoreSpecification
(accessed: 15/08/2014)

[ORM12] Open Services for Lifecycle Collaboration Requirements Management
Specification Version 2.0, 2012.
http://open-services.net/bin/view/Main/RmSpecificationV2
(accessed: 15/08/2014)

[OSLC08] Open Services for Lifecycle Collaboration,2008. http://open-services.net/
(accessed: 15/08/2014)

[PRZ09] G. Pirklbauer, R. Ramler, R. Zeilinger. An integration-oriented model for applica-
tion lifecycle management. Proceedings of the 11th International Conference con
Enterprise Information Systems (ICEIS 2009), pages 399-403, INSTICC. (2009)

[RBMC14] G. Regan, M. Biro, F. Mc Caffery, K. Mc Daid, D. Flood. A traceability process
assessment model for the medical device domain. In B. Barafort, R. O’Connor, A.
Poth, & R. Messnarz (Eds.) Systems, Software and Services Process Improve-
ment, vol. 425 of Communications in Computer and Information Science, (pp.
206–216). Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-
662-43896-1_18 (accessed: 15/08/2014)

Chapter 5

The sufficient criteria for consistent modeling from
the context diagram to the business use case
diagrams driven by consistency rules

It would be unreasonable to capture everything we want in a single comprehensive diagram. Such
diagram would be too big and complex, and primarily too confusing to display all architectural
concerns. Key software architecture aspects should be therefore captured in several diagrams or
even models, while the architectural details are grouped in adequate views and presented in a set
of logically linked subsequent models. Preferably all these subsequent models should be logically
originated from a certain initiating diagram. We propose to start modeling the software architec-
ture from the initial business context diagram with subsequent process decomposition diagrams,
and relevant business use case diagrams. The verification of consistency of all these diagrams
would be obviously needed to identify all omissions and errors in requirements most preferably at
the early stage of the development process. Semi-formal nature of these diagrams makes this
consistency verification challenging. We propose to apply simple consistency rules to enable
automatic verification of consistency of diagrams presenting business context, and process de-
composition, and business use case models. Moreover these consistency rules enable simultane-
ous modeling of the functionality, of the structure and of the behavior of the business layer of the
software architecture.

Typical communication problems arise when some specific software should

be developed within not negotiable and strict timeframe and cost constraints. It
usually occurs in public sector development projects when business needs are
not sufficiently defined and technical documentation is missing or at least obso-
lete while majority of technology platforms was already specified and finally
fixed in Terms of References. In such circumstances effective capture of the
most important business aspects and establishing an efficient communication
highway with business owners are crucial for the overall success of the software
development process. 1

To complement such picture of the whole analysis and development scenario
the contracting institution usually is managing no Enterprise Architecture or

1 Interestingly to note that above problems seem perpetual despite the rapid development of

ITC technologies, their availability and vast potential. The problems are of very similar nature
despite they are arising for a case of quite new function capable system or now even more often
for a case of platform modernisation project. In the latter case usually the existing platform of
spaghetti like architecture supposed to support several business functionalities should be analysed
and significantly improved with removal of identified bottle-necks and with optimised mainte-
nance features while adding newly emerging functionalities.

84 Software Engineering from Research and Practice Perspectives

TOGAF [TOGAF] artifacts exist, while all important details of AS-IS ICT (In-
formation and Communications Technology) infrastructure are residing in IT
staff’s brains rather than in process maps, data models and infrastructure
schemes. Sometimes even most of IT staff brains belong to the outsourcing
company competing and as such lost or excluded from the finalized tender for
the development/modernization concerned.

In object-oriented software development, the UML [UML] has become the
standard notation for the software architecture modeling at different stages of
the life cycle and at different views of the software system, including the speci-
fication of requirements. Thus in the majority of projects using UML diagrams
[CY02], [K08], use case diagrams are developed at the beginning of software
development to describe the main functions of the software-based system. The
use case diagrams describe however only a functionality of software architec-
ture. Therefore we propose to start modeling software architecture from the
business context diagram2 with subsequent process decomposition diagrams3,
and following them with relevant business use case diagrams. The business
context diagram proposed by us presents the three dimensions of the software
architecture but it shows only key software architecture drivers in one single
model, thus is not a big and complex diagram. We show how to relate this con-
text diagram with subsequent process decomposition diagrams, and with the use
case diagrams relevant to them.

An early consistency check of the key diagrams is considered important for
the consistency and completeness of software architecture, while in principle
challenging due to the informal nature of UML specifications. We propose to
apply the sufficient criteria for consistent modeling from the business context
diagram to the business use case diagrams driven by consistency rules. By suf-
ficient criteria we mean that:

⎯ the context diagram must describe structure, behavior, and functional
aspect of the system;

⎯ key elements of the context diagram must be mapped onto process de-
composition diagrams;

⎯ key elements of decomposition diagrams must be mapped onto business
use case diagrams.

2 Design diagram based on UML activity diagram describes main business process inputs and

output, processing rules and internal structure to store processed data.
3 Design diagram based on UML activity diagram describes specific business subprocesses

decomposed from the main business process.

The sufficient criteria for consistent modelling from the context diagram… 85

We propose to apply simple consistency rules to enable automatic verifica-

tion of consistency of diagrams which present business context, and process
decomposition and business use case models. The aim of the consistency analy-
sis is to validate that key elements from those diagrams are mapped onto ade-
quate elements on the conjugated diagrams. Next we propose to verify that each
diagram sufficiently describes structure, behavior, and functional aspects of the
given system.

The object pseudo-code can be used to formalize this problem and to provide
tool support for the analysis. The idea with Z formalization was presented in
[NB12] for class, state machine and use case diagrams based on FSB UML
diagram. The object pseudo-code may be easily implemented in Java code tools.

Based on our previous work cited above, this chapter presents the sufficient
criteria for consistent modeling from the business context diagram to the busi-
ness use case diagrams driven by consistency rules. In order to apply the pro-
posed criteria we provide a consistency rules for related UML diagrams with the
object pseudo-code. We also improve the existing criteria already described and
we introduce new rules for the analysis phase. Our concepts are logically ex-
tended from the previous papers based on experience of IT projects publicly
procured in Poland within the period 2013 – 2014 to the Ministry of Finance
and to the Agency for Restructuring and Modernization of Agriculture. It is also
underlined here that the proposed criteria driven with consistency rules enable
automatic modeling of IT systems.

5.1 Related works

Different software models describe the same system from different points of
view, at different levels of abstraction and granularity, possibly in different no-
tations. They may represent the perspectives and goals of different stakeholders.
Usually some inconsistencies between models are arising [SZ99]. Inconsisten-
cies in models reveal design problems. If these problems are detected at the
early stages of design, costs of fixing them are much lower than dealing with
discoveries later during software development or roll-out phases.

Usually UML models are translated into programming languages. Incon-
sistent UML model may result in an imprecise code. Inconsistencies highlight
however conflicts between the views and goals of the stakeholders, thus indicat-
ing those aspects of the system which should be further analyzed.

As presented in [HK08], there are several methods to verify consistency in
UML diagrams: meta model-based method [PB07], graph-based method [SS
06], scenario-based method, constraint-based methods and knowledge-based

86 Software Engineering from Research and Practice Perspectives

methods [WHCZ12]. We are focusing here on constraint-based methods (pseu-
do-code) and on a graph-based method.

In 2000 Egyed proposed methods for fixing inconsistencies in UML dia-
grams [E00]. These methods were addressing class, state, object and sequence
UML diagrams. The approach to check consistency of activity diagrams was
proposed by Jurack et el. in 2008 [JLMT08]. In this method the consistency of
the activity diagram was validated with checking whether all flow paths can be
performed. Shinkawa in his research [S06] proposed generating consistent UML
diagrams from the activity diagram based on Coloured Petri Net. A few rules of
consistency between activity diagrams and use case diagrams were proposed by
Ibrahim [IISMH11].

Our research studied the consistency of several UML diagrams ranging from
the business context diagram (BCM) to the business use case diagrams. We
propose the sufficient criteria for consistent modeling of diagrams for context,
process decomposition, and business use cases which is driven by the consisten-
cy rules. In our method we propose the new consistency rules.

Moreover our approach enables to describe the system in three dimensions
i.e. its function, and structure and behavior. E.g. Goel, Rugaber, and Vattam
proposed in [GRV09] the structure, behavior, and function modeling language4.
They viewed SBF as a programming language with specified abstract syntax
and static semantics. The SBF language captures the expressive power of the
programs and provides a basis for interactive construction of SBF models. They
also described an interactive model construction tool called SBFAuthor which is
based on the abstract syntax and static semantics of the SBF language. The pre-
cise specification potentially provides for a range of additional automated capa-
bilities such as model checking, model simulation, and interactive guides and
critics for model construction. The problems of consistency and completeness
of models are not however discussed in their paper.

5.2 Criteria of Consistency

According to Functional-Structure-Behavior (FSB) framework introduced by
John Gero [G90] the purpose of design description is to transfer sufficient in-
formation about target system so it can be constructed. The description must at
least provide for function, and structure, and behavior of the target system.
Therefore the development of software in which one cannot take into account
these three dimensions are “doomed to fail”. Truyen [T06] described a model,

4 SBF hereinafter

The sufficient criteria for consistent modelling from the context diagram… 87

in major MDA concepts, as a formal specification of function, structure and
behavior of a system. He claims that model must be represented by a combina-
tion of UML diagrams. Spanoudakis and Zisman [SZ99] described this as a
situation, in which model inconsistencies may arise.

In this section we explain the meaning of consistency of models, which we
subsequently apply in the modeling of context, process decomposition, and use
case diagrams. Then we present our concept of the sufficient criteria for con-
sistent modeling from BCM (Business Context Model) to BUC (Business Use
Case) diagrams.

5.2.1 Model Inconsistencies

To assert that something is consistent firstly we have to declare to what it is
consistent with. Software models describe a system from different points of
view, at different levels of abstraction with various granularities, and in differ-
ent notations. Models represent viewpoints, interests and goals of various stake-
holders. Such models may easily contradict themselves or in other words loose
the consistency. Inconsistencies are usually arising even between diagrams de-
scribing the same model.

Inconsistencies reveal serious design problems. Identification of inconsisten-
cies and measures for achieving required consistency can be found in formal
methods. The research on consistency models was outlined by Finkelstein
[FGHKN94]. Finkelstein stated that inconsistency may be not necessarily a bad
thing, and should be evaluated after the translation of the model specification
into formal logic. UML is not a formal language so often UML models are
translated into more formal notation. Inconsistencies between class, state ma-
chine and sequence diagrams in UML [E06] are studied. Inconsistencies arise
also because some models are overlapping [SZ99].

UML consistency analysis goes far beyond checking syntax and semantics; it
should also encompass other domains like targeted programming language,
modeling methodology, modeled systems, and application and implementation
domains.

Mens [MSS05] proposed five consistency types:
1. Inter model (vertical) consistency

Consistency is evaluated between different diagrams and different
levels of abstraction. The syntactic and semantic consistencies are
also taken into account.

2. Intra model (horizontal) consistency

88 Software Engineering from Research and Practice Perspectives

Consistency is validated between different diagrams but at the same
level of abstraction.

3. Evolution consistency
Consistency is validated between different versions of the same
UML diagram.

4. Semantic consistency
Consistency is validated for the semantic meaning of an UML dia-
gram defined by an UML meta-model.

5. Syntactic consistency
Consistency might be validated for the specification of UML dia-
grams in an UML meta-model.

We believe that the Business Context Model should be created firstly and

should be already in a consistent form before providing logic for creation of the
subsequent models. Such approach prevents from complicated and complex
detection of inconsistencies during the model construction.

5.2.2 The Sufficient Criteria for Consistent Modeling from the Business
Context Diagram to the Process Decomposition Diagrams

In typical approach of software providers the business context diagrams are
not appreciated and often even disregarded as not conveying sufficiently de-
tailed technical information like data formats. Analysts tend to capture the max-
imum of technical details, put them into weakly structured documents and get
quick feedback from the business users (business owners) either directly or us-
ing the institution IT staff as go-between. Once comments are received pro-
grammers change their cap logos from “ANALYST” to “DESIGNER” to de-
velop business functions directly to get prototype or sometimes even so called
“pilot” to be presented to the institution business and IT experts again for feed-
back. At that moment the communication is usually completely spoiled and the
overall project heads towards a disaster at least from the functional capabilities
perspective. The business experts got so frustrated with the obvious huge dis-
crepancy between the prototype/pilot and their expectations that the escalation
meetings are called whilst significant delays are penalized with the contract
clauses. Such situations however might be easily prevented with the disciplined
use of context diagrams.

Presumably there is no institution with a full business context model (BCM)
developed either for AS IS or for TO BE scenario. A generic model of such
BCM diagram is sketched in Figure 5.1.

The sufficient criteria for consistent modelling from the context diagram… 89

It represents all meaningful business information flows to and from the insti-

tution information system. In practical circumstances of any development (TO
BE scenario) and/or maintenance project (both AS IS & TO BE scenarios) a
much simpler diagram may be easily initially constructed as shown in Figure
5.2. It represents all business flows to be defined for the project either deducting
from the Terms of Reference document and/or from the institution Regulation
Book. In both diagrams dependencies describe information flows concerned
defining senders and recipients of information elements/objects or sig-
nals/events.

Figure 5.1. Generic Business Context Diagram.

Dependencies should also describe all major non-functional requirements
like calendar/average and peak densities of data flows, required availability and
any other SLA parameters.

The consistency criteria for the business context model start here as follows:
- All flows (dependencies) must be identified (and duly confirmed by busi-

ness owners of the concerned project5)
- All types of customers should be identified and categorized due to their dif-

ferent behaviors and numbers6.
- Each dependency represents at least one and possibly more core business

processes initiated in a specific way and delivering specific products (obviously

5 The best practice recommendation from e.g. PRINCE2 (http://www.prince-officialsite.com)
6 The principle of BPM in [B01]

 analysis Generic Business Context Diagram

Institution Information System

Business Area 1

Stakeholders Category 1.

Internal Stakeholders Category 3.

Institutional Stakeholders Category 2

Customers Type 1,
Type 2, .. Type n

Suppliers Type 1,
... Type n

Collaborators Type
1,.. Type n

Employees Shareholders

Banking System

Health & Social
Security Fund

Institution
Authorised
Employee

Customs/Tax
Authority

Institution 1, 2, ... n

External Auditor

Managers Business Owners AuditorsTradeUnions PensionersApplicants

Business Area 2

Business Area 3

Business Area 4

Dependency m: #
of transactions/per
day, maximum
unavailabil ity per
day

Dependency i: # of sessions per
day (peak/average), maximum
response time, maximum
unavailablity per month/per
year...

Realise 1 Realise 4

Dependency k

Dependency n

90 Software Engineering from Research and Practice Perspectives

there are desirable products but all unwanted products are frequently forgotten).
ALL products should be defined with realistic measures6.

Figure 5.2. Typical system design environment.

- Each process must be assigned to the specific business owner defining ap-

plicable business rules and first of all the strategic goal of the whole process.
Once the overall goal is established relevant tactical objectives may be defined.
Having goal, objectives and all products defined adequate measures for the pro-
cess may be proposed and modeled.

Such model of the platform or a system concerned may be drafted and duly
agreed with the business owners within 2-3 days. Thus based on agreed well
defined reference model there are established proper grounds for further ad-
vancement of consistent analytical modeling for any future change requests and
even disputes. It is also especially notable that all important factors missing
from the initial Terms of Reference are quickly identifiable during that phase
and may be agreed at the early stage of contract/development.

We show that all further aspects of the system are traceable to that initial
business context model with the described consistency rules.

The business context BCM model should be further decomposed into the fol-
lowing parallel models.

-­‐ Actors. Those are all stakeholders identified in the BCM decomposed in-
to distinguishable groups and subgroups depending on their different be-
haviors and interests to the system.

 analysis Typical system design env ironment

Institution Information System

Business Area 1

Stakeholders Category 1. Institutional Stakeholders
Category 2

Customer Type 1

Customer Type 2

Customer Type 3

Business Area 2
Institution 1

Dependency k: # of
querries per day or
per year
(peak/avarege),
required response
time, maximum
unavailabil ity per
month/ per year

Dependency mDependency 3

Dependency 2: # of
messages per day/ per
year; maximum
unavailabil ity per
month/per year

Dependency 1

The sufficient criteria for consistent modelling from the context diagram… 91

-­‐ Business processes. Those are all flows identified in the BCM multiplied

and decomposed if required into more granular behaviors described by
activity diagrams. While modeling business processes all major data ob-
jects are identified and the structural class model could be created.

-­‐ Use Cases. Business processes are subsequently decomposed into use
case activity diagrams. Scenarios of Use Cases define the dynamic be-
havior of the system.

5.3 The Rule-based Method for Consistent Modeling from the Context Dia-
gram to the Use Case Diagrams Driven by Consistency Rules

We propose to start modeling the software architecture from the initial busi-
ness context diagram with the subsequent process decomposition diagrams, and
the relevant business use case diagrams. The verification of consistency of all
these diagrams would be obviously needed to identify all omissions and errors
in requirements at the early stage of the development process.

5.3.1 Mapping of the business context diagram onto the process decomposi-
tion diagram

In Figure 5.3 there are presented rules of mapping the elements from a con-
text diagram onto a process decomposition diagram.

Figure 5.3. Rules for mapping a context diagram onto a process decomposition diagram.

analysis Context2Decomposition

Decomposition DiagramContext Diagram

Main
Process

Event 1

Event 2

Event n

Repository

Product 1

Product 2

Business
rules

Subprocess 1

Subprocess 2

Subprocess nEvent n

Event 1.1

Event 1.2

Product 2

Product 1.1

Product 1.2

decomposition into Event n

decomposition into Subprocess 1

decomposition into Subprocess 2

decomposition into Subprocess n

decomposition into Event 1.1

decomposition into Event 1.2

decomposition into Subprocess 1

decomposition into Subprocess 2

decomposition into Subprocess n

decomposition into Product 1.1
decomposition into Product 1.2

decomposition into Product 2

92 Software Engineering from Research and Practice Perspectives

The mapping rules have been described below with a pseudo-code while the

following assumptions were made.
1. The context diagram comprises of a single main process, and of at least

one event and of at least one product with relevant links/connections be-
tween them.
public class contextDiagram {
 protected EList<Event> events;
 protected EList<Product> products;
 protected EList<Process> process;
 protected EList<Dependency> dependencies;
}

It should be noted that at the context diagram events describe behaviours,
and products describe a structure while processes describe functionality
of the modeled system. These are further described as the context dia-
gram sufficient consistency rules.

2. Process decomposition diagram comprises of at least one sub-process,
and of at least one event, and of at least one product and of relevant con-
nections/links between them.
public class processesDecompositionDiagram {
 protected EList<Event> events;
 protected EList<Product> products;
 protected EList<Process> process;
 protected EList<ObjectFlow> objectflows;
}

It should be noted here that similarly to the business context diagram, at
the process decomposition diagram also events describe behaviours, and
products describe a structure while processes describe functionality of the
modelled system. These are further described as the context diagram suf-
ficient consistency rules

Further on there are rules to transform elements from the BCM diagram onto
the process decomposition diagram and then follow diagram validation rules for
checking completeness and consistency of diagrams.

Rule 1 (R1) – decomposing of initiating events into initiating sub-events
(Event_1 -> Event_1.1 or Event_1 -> Event_1.2):

Map<Event> createSubProcesses(contextDiagram, subevents) {
for(Event event: contextDiagram) {
 for(int i=0;i<=event.getDecomposition; i++) {
 if(event.getDecomposition>0) {
 //new product

Event subevent = UMLFactory.eINSTANCE.createEvent();
//sub-product name
subevent.setName(event.getName() +
 event.getSubNumber());
subevent.setSubprocess(true);//new sub-process
subevents.add(subevent); //sub-product list

The sufficient criteria for consistent modelling from the context diagram… 93

 } else

subevents.add(event); //product list
 }
}
return subevents;

}

Rule 2 (R2) – decomposing of the main process (Level 1) into sub-processes
(Level 2) as per initiating events (Event_1, Process -> Subprocess_1 or
Event_2, Process -> Subprocess_2 or Event_n, Process -> Subprocess_n):

Map<Process> createSubProcesses(subevents, subprocesses) {
 for(Event event: subevents) {
 if(event.getSubprocess) {
 //new sub-process
 subProcess subproc =

 UMLFactory.eINSTANCE.createSubProcess();
subproc.setName(“Subprocess “+event.getNumber());
createObjectFlow(subproc, event);
subprocesses.add(subproc);

 }}
 return subprocesses;
}

Rule 3 (R3) – decomposing of output products into output sub-products
(Product_1 -> Product_1.1 or Product_1 -> Product_1.2):

Map<Product> createSubProcesses(contextDiagram, subproducts) {
for(Product product: contextDiagram) {
 for(int i=0;i<=product.getDecomposition; i++) {
 if(i>0) {
 Product subproduct = UMLFactory.eINSTANCE.createProduct();
 subproduct.setName(product.getName()+product.getSubNumber());
 subproducts.add(subproduct);
 } else
 subproducts.add(product);
 }}
return subproducts;
}

The above three rules (R1, R2, R3) provide for generating all events, and
products and sub-processes for the process decomposition diagram. ObjectFlow
type relations could be also generated for events, and sub-events and sub-
processes however to complete process decomposition diagram the relations
between sub-processes, and products and sub-products should be defined manu-
ally.

Rules to map the complete and consistent process decomposition diagram
from the complete and consistent context diagram that fulfills the necessary
conditions of complete software architecture are as follows:

Rule 4 – there is only one process to represent system behavior;
Rule 5 – there is at least one event influencing the process to represent sys-

tem function;

94 Software Engineering from Research and Practice Perspectives

Rule 6 – there is at least one product processed by that process to represent

system function;
Rule 7 – there is at least one object to represent data structure to be stored

within the system exchanging data with the process;
Rule 8 – there is at least one business rule to determine process behavior to

represent system behavior.
The necessary completeness rules for context diagrams are stated with pseu-

do-code below.
Rule 4 (R4) – validation of the existence of a single process:
boolean verifyProcessInDiagramContext(contextDiagram) {

int count=0;
for(Process proces: contextDiagram) count++;
If(count==1) return true;

 return false;
}

Rule 5 (R5) – validation of the existence of at least one event:
boolean verifyEventInDiagramContext(contextDiagram) {

int count=0;
for(Event event: contextDiagram) {

count++;
if(!contextDiagram.getProcess().getControlFlow()
 .contains(event.getControlFlow())
 return false;

}
If(count<1) return false;

 return true;
}

Rule 6 (R6) – validation of the existence of at least one product:
boolean verifyProductInDiagramContext(contextDiagram) {

int count=0;
for(Product product: contextDiagram) { //wyszukiwanie produktów

count++;
if(!contextDiagram.getProcess().getObjectFlow()
 .contains(product.getObjectFlow())
 return false;

}
If(count<1)

return false;
 return true;
}
Rule 7 (R7) – validation of the existence of at least one data object:
boolean verifyDataInDiagramContext(contextDiagram) {

int count=0;
for(Object object: contextDiagram) { //wyszukiwanie obiektów danych

count++;
if(!contextDiagram.getProcess().getObjectFlow()
 .contains(object.getObjectFlow())
 return false;

}

The sufficient criteria for consistent modelling from the context diagram… 95

If(count<1)

return false;
 return true;
}
Rule 8 (R8) – validation of the existence of at least one business rule:
boolean verifyRuleInDiagramContext(contextDiagram) {

int count=0;
for(Rule rule: contextDiagram) { //wyszukiwanie reguły biznesowej

count++;
if(!contextDiagram.getProcess().getObjectFlow()
 .contains(rule.getObjectFlow())
 return false;

}
If(count<1)

return false;
 return true;
}
Once the process decomposition diagram is adequately completed all its el-

ements must fulfil the necessary completeness conditions defined by the follow-
ing rules:

Rule 9 – each product is an outcome of the process (sub-process);
Rule 10 – each event has to influence the process (sub-process);
Rule 11 – each process (sub-process) has to be initiated with at least one

event (sub-event) and has to be completed with at least one output product (sub-
product).

Rule 9 (R9) – validation of the consistence of subprocesses and events:
boolean verifyProcessesDecomposition(subproducts, subprocesses) {

for(Product product: subproducts) {
if(!subprocesses.getObjectFlow.contains(product.getObjectFlow())

return false;
}
return true;

}
Rule 10 (R10) – validation of the consistence of sub-processes and products:
boolean verifyProcessesDecomposition (subevents, subprocesses) {

for(Event event: subevents) {
if(!subprocesses.getObjectFlow.contains(event.getObjectFlow())

return false;
}
return true;

}
Rule 11 (R11) – validation of the consistence of sub-processes with events

and products:
boolean verifyProcessesDecomposition (Map<Product> subproducts, Map<Event> subevents,

Map<Process> subprocesses) {
for(Process process: subprocesses) {

boolean isEventObjectFlow=false;
boolean isProductObjectFlow=false;

96 Software Engineering from Research and Practice Perspectives

for(ObjectFlow objectflow : process.getObjectFlow())
 if(subevents.getObjectFlow.contains(objectflow) {

isEventObjectFlow.set=true;
break;}

for(ObjectFlow objectflow : process.getObjectFlow())
 if(subproducts.getObjectFlow.contains(objectflow) {
 isProductObjectFlow=true

break;}
 if(!isEventObjectFlow ||!isProductObjectFlow)
 return false;

}
return true;

}

5.3.2 Mapping of the process decomposition diagram onto the business use
case diagram

The next step to transform the sequence of the business view diagrams (Fig-
ure 5.4) is to map elements from the process decomposition diagram onto the
business use case diagram.

Figure 5.4. Rules of mapping process decomposition diagram onto BUC diagram.

The following assumptions were made for the business process decomposi-

tion diagram and for the business use case diagram.
1. The business process decomposition diagram contains at least one

business sub-process, at least one event, and at least one product and
relevant connections/links between those elements.
public class processesDecompositionDiagram {
 protected EList<Event> events;
 protected EList<Product> products;

analysis Decomposition2BUseCases

UseCase DiagramDecomposition Diagram

Subprocess 1

Subprocess 2

Subprocess nEvent n

Event 1.1

Event 1.2 Product 2

Product 1.1

Product 1.2

UC1. Subprocess 1

UC2. Subprocess 2

UCn. Subprocess n

Actor1

Actor2

Actorn

The sufficient criteria for consistent modelling from the context diagram… 97

 protected EList<Process> process;
 protected EList<ObjectFlow> objectflows;
}
It should be noted that at the context diagram events describe behav-
iors, and products describe a structure while processes describe func-
tionality of the modeled system.

2. The business use case diagram contains at least one business use
case, and at least one actor and relevant associations between those
elements.
public class businessUCDiagram {
 protected EList<UseCase> usecases;
 protected EList<Actor> actors;
 protected EList<Association> associations;
}
It should be noted that at the business use case diagram use cases and
actors describe functionality of the modeled system. It should be
mentioned also here that UML 2.0 version of standard classifies the
use case diagram that supports the business use case diagram as the
one of diagrams to describe behavior of a system.

Further on firstly there are rules to transform elements from the process de-
composition diagram onto the business use case diagram and then follow dia-
gram validation rules for checking of the created business use case diagram.

Rule 20 (R20) – mapping of business sub-processes onto business use cases
(Subprocess_1 -> UC1. Subprocess_1, Subprocess_2 -> UC2. Subprocess_2,
Subprocess_n -> UCn. Subprocess_n):

Map<UseCase> createBusinessUC(Map<Event> subevents, Map<UseCase> busecases) {
for(Event event: subevents) {

UseCase businessUC = UMLFactory.eINSTANCE.createUseCase();
businessUC.setName(“UC”+businessUC.getNewNumber()+event.getName());
busecases.add(businessUC);

}
return busecases;

}
Rule 21 (R21) – mapping of input events/subevents and products onto actors

(Event_1.1, Product1.1 -> Actor1 or Event_1.2, Product2 -> Actor2 or Event_n,
Product1.2 -> ActorN):

Map<Actor> createActors(Map<Event> subevents, Map<Actor> actors) {
for(Event event: subevents) {

Actor actor = UMLFactory.eINSTANCE.createActor();
actor.setName(actors.getNewName());
createAssociation(actor,
 (UseCase) ((Process) event.getSubProcess()).getUC());
actors.add(actor);

}
return actors;

}

98 Software Engineering from Research and Practice Perspectives

The above two rules (R20, R21) provide for generating all business use cas-

es, and all actors for the business use case diagram. Associations type relations
could be also generated for linking actors and business use cases however to
complete creation of the business use case diagram the relations between sepa-
rate use cases should be defined manually (extend, include).

Once the business use case diagram is properly completed all its elements
must fulfill the necessary conditions of completeness and consistency defined
with the following rules:

Rule 22 (R22) – validation of consistency of use cases:
boolean verifyBusinessUCDiagram(Map<UseCase> busecases, Map<Actor> actors) {

for(UseCase busecase: busecases) {
if(!busecase.getAssociation.contains(actors.getAssociation())

return false;
}
return true;

}
Rule 23 (R23) – validation of consistency of actors:
boolean verifyBusinessUCDiagram (Map<Actor> actors, Map<UseCase> busecases) {

for(Actor actor: actors) {
if(!actor.getAssociation.contains(busecases.get Association())

return false;
}
return true;

}

5.4 Conclusion

In this chapter we have presented a strict procedure to assure consistency of
software architecture models in a top-down approach starting with the Business
Context Model. The advantages of the approach are as follows.

Developing strict business context model provides for a quick reference for
capturing all important non-functional operation aspects while updating and
completing system specifications. Change requests are therefore easily traceable
and manageable. Business owners and process operators could actively partici-
pate in identifying all requirements during the analysis and are aware of its pro-
gress thus increasing confidence and improving efficiency of project communi-
cations. Our method enables to keep the consistency and satisfactory complete-
ness of the business model.

Finally our method allows for automatic generating of complete business
model with very limited need for “manual” programming. In addition, we have
shown that the UML diagrams mapped from the business context diagram are
consistent.

The sufficient criteria for consistent modelling from the context diagram… 99

The next step in our work is to develop the tool automatically generating

complete workflow applications based on our method.

References
[B01] Burlton, R.: Business process management: profiting from process, Sams, Indi-

anapolis, IN, 2001.
[CY02] Choi, H., Yeom, K.: An Approach to Software Architecture Evaluation with the

4+1 View Model of Architecture. In: Ninth Asia-Pacific Software Engineering
Conference, pp. 286—293. IEEE Computer Society, 2002.

[E00] Egyed A.F., “Heterogeneous View Integration and its Automation," PhD diss.,
University of Southern California, 2000

[E06] Egyed A.: Instant consistency checking for the UML. In ICSE, pages 381–390,
2006

[FGHKN94] Finkelstein, A., D. Gabbay, A. Hunter, J. Kramer and B. Nuseibeh: Inconsisten-
cy Handling in Multi-Perspective Specifications. Transactions on Software
Engineering, 20(8): 569-578, IEEE Computer Society Press, 1994

[G90] Gero, J. S., Design prototypes: a knowledge representation schema for design,
AI Magazine, 11(4): 26-36, 1990

[GRV09] Goel, A., Rugaber, S., Vattam, S.: Structure, behavior & function of complex
systems: The SBF modeling language. International Journal of AI in Engineer-
ing Design, Analysis and Manufacturing, 23, 23–35, 2009

[HK08] Ha, I., Kang, B.: Cross Checking Rules to Improve Consistency between UML
Static Diagram and Dynamic Diagram. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H.
(eds.) IDEAL 2008. LNCS, vol. 5326, pp. 436–443. Springer, Heidelberg, 2008

[IISMH11] N. Ibrahim, R. Ibrahim, M. Z. Saringat, D. Mansor, & T. Herawan, Definition of
Consistency Rules between UML Use Case and Activity Diagram, in T.-h. Kim,
H. Adeli, R. J. Robles & M. Balitanas (Eds.), Ubiquitous Computing and Mul-
timedia Applications, ed., Communication of Computer and Information Scienc-
es vol. 151, Springer Berlin / Heidelberg, Daejeon, Korea, 2011

[JLMT08] S. Jurack, L. Lambers, K. Mehner, G. Taentzer, Sufficient Criteria for Consistent
Behavior Modeling with Refined Activity Diagrams, Model Driven Engineering
Languages and Systems, Lecture Notes in Computer Science Volume 5301, pp
341-355, 2008

[K08] Kennaley M.: The 3+1 Views of Architecture (in 3D): An Amplification of the
4+1 Viewpoint Framework. In Seventh Working IEEE/IFIP Conference, pp.
299—302. IEEE Computer Society, 2008

[MSS05] Mens T., Van der Straeten. R., Simmonds, J., A Framework for Managing Con-
sistency of Evolving UML Models, In: Software Evolution with UML and
XML, ed. Yang H., chapter 1, 2005

[NB12] Niepostyn Stanisław Jerzy, Bluemke Ilona: The Function-Behaviour-Structure
Diagram for Modelling Workflow of Information Systems, w: Advanced Infor-
mation Systems Engineering Workshops / Bajec Marko, Eder Johann (red.),
Lecture Notes in Business Information Processing, vol. 112, Springer, ISBN
978-3-642-31068-3, ss. 425-439 (EOMAS 2012), 2012

[PB07] Paige R.F., Brooke P.J., Metamodel-Based Model Conformance and

100 Software Engineering from Research and Practice Perspectives

Multi-View Consistency Checking, ACM Transactions on Software Engineering
and Methodology, Volume 16 Issue 3, July 2007

[S06] Y. Shinkawa, Inter-Model Consistency in UML Based on CPN Formalism, in:
13th Asia Pacific Software Engineering Conference (APSEC '06), pp. 414-418,
2006

[SS06] Shuzhen, Y., Shatz, S.M.: Consistency Checking of UML Dynamic Models
Based on Petri Net Techniques. In: Gelbukh, A., Guerra, S.S. (eds.) Proc. of the
15th International Conference on Computing (CIC 2006), pp. 289–297. IEEE
Computer Society, Washington, 2006

[SZ99] Spanoudakis, G. and Zisman, A., Inconsistency management in software engi-
neering: survey and open research issues. In: Chang, S.K. (Ed.), Handbook of
Software Engineering and Knowledge Engineering, World Scientific Publishing
Co., Singapore. pp. 329-380, 1999

[TOGAF] The Open Group's Architecture Forum: http://www.opengroup.org/togaf/
[T06] Truyen F., The Fast Guide to Model Driven Architecture, The Basics of Model

Driven Architecture, Cephas Consulting Corp, January 2006
[UML] OMG Model Driven Architecture, http://www.omg.org/mda/
[WHCZ12] Wang, Z., He, H., Chen, L., and Zhang, Y., Ontology based semantics checking

for UML activity model. Information Technology Journal. 11, 3, 301-306, 2012

Chapter 6

How software development factors influence user
satisfaction in meeting business objectives

and requirements?

User satisfaction is an useful measure of success of software development projects. The goal
of this chapter is to analyze if and how individual factors describing software development pro-
cess and product are related with selected features of user satisfaction. This chapter investigates
two features of user satisfaction: meeting stated objectives (MSO) and meeting business require-
ments (MBR). Achieving such goal involved using visual techniques as well as a range of statisti-
cal and data mining techniques. For MSO there are more identified relationships and they are
usually stronger than for MBR. Although there are some disagreements in relationships identified
with different techniques, there is a common set of explanatory variables identified by most of
techniques. Identified relationships can be used to build more complex simulation or predictive
models.

User satisfaction is one of the most important features of software quality. In
general, information systems are developed to meet the needs of their users.
Satisfaction reflects the level of fulfillment of users’ needs by a software sys-
tem, Thus, the inherent problem with user satisfaction is that it is impossible to
express it objectively and difficult to empirically prove what influences it.

Nevertheless, this chapter makes an attempt to identify factors that are relat-
ed with user satisfaction. Typically, the literature on user satisfaction focuses on
application and management perspectives, without links to software develop-
ment context. In contrast, this study focuses on core software engineering fac-
tors.

User satisfaction can be treated as an aggregated measure or broken down in-
to a set of detailed characteristics. This analysis uses the extended ISBSG da-
taset of software projects [I09] where user satisfaction is expressed by eight
variables. This study investigates two of these variables that are important from
the business perspective, i.e. user satisfaction with the ability of system to meet
stated objectives (MSO) and to meet business requirements (MBR). Other
aspects of satisfaction will be investigated in future studies. The main research
questions are as follows:

⎯ RQ1. Which software engineering factors influence MSO and MBR?
⎯ RQ2. What is the nature of these relationships?
To answer these questions, we follow a research approach involving the use

of a range of statistical and data-mining techniques (explained in Section 6.2).
The main contribution of this chapter is a list of software engineering factors

102 Software Engineering from Research and Practice Perspectives

identified by different techniques as related with MSO and MBR. In addition,
this chapter discusses the nature of these relationships, pointing out some cau-
tion, where appropriate, in interpreting pure quantitative results.

It is important to note that the chapter does not investigate what factors in-
fluence if the stated objectives or business requirements are met. Rather, it in-
vestigates user satisfaction in these aspects. It is possible that stated objectives
are met only in some degree but the user is still generally satisfied with that
situation.

6.1 Related work

There are two main related groups of studies, i.e. exploratory studies and
prediction studies. The exploratory studies, like the current study, focus on un-
derstanding specific phenomena based on analysis of empirical data, expert
knowledge, observations, surveys etc. Several such studies investigating user
satisfaction have been performed [B05], [MAD12], [P08], [TT10], [WT05].
Studies of user satisfaction with an empirical emphasis have been performed for
about 25 years [K93], [W88]. Most of these studies focus on application and
management perspectives, typically without strong links to software engineer-
ing. In addition, these studies usually involve analysis of very few projects or
deeper analysis of just a single project. Thus, while results provided in these
studies may be useful in specific context, it is difficult to draw more general
conclusions based on them.

In more recent study [SW10] the authors argue that “high rate of developer
turnover in projects (due to dissatisfaction) could lead to increasing costs for
development firms as well as high user/customer dissatisfaction”. The authors
observe that with increasing level of user participation the level of developer
satisfaction also increases, however the level of user satisfaction slowly de-
creases. In [RC10] the authors investigate one aspect of user satisfaction, i.e.
improving software usability in open-source software. Using a range of statisti-
cal methods they analyze factors that might be relevant, i.e., understanding us-
ers’ requirements, seeking usability experts’ opinion by software developers,
incremental approach in design, usability testing by managers/developers, and
knowledge of user-centered design methods. Since satisfaction with usability
will be investigated in future, these results are not relevant for the current study.

The other group of studies aim at building model(s) that could be used to
predict future states of certain phenomena based on a set of observations and/or
assumed states. While a range of predictive models or frameworks for building
them have been proposed in software quality literature [C11], [HB12],

How software development factors influence user satisfaction in meeting… 103

[SBH14], very few studies focus on prediction of user satisfaction [FM04],
[PP13]. In contrast with the current study, user satisfaction is defined there as an
aggregate measure. In [FM04] the focus is on resource prediction; satisfaction
depends here on the combination of software quality (mainly its defectiveness)
and specification accuracy. A model developed in [PP13] predicts user satisfac-
tion based on the definition of software requirements.

6.2 Methodology and data

This study uses the extended ISBSG dataset of software projects [I09]. The
extension means that it contains additional, usually soft, features, such as user
satisfaction. Although the ISBSG dataset has been used in numerous studies,
e.g. [FG14], [KJ13], [ML08], such extended version in only very few [R11b],
[R12]. After numerous data preprocessing steps, explained later in this section,
the subset of the dataset used for the main part of analysis contains data on 89
projects described by a set of variables listed in Table 6.1.

The research methodology contains the following steps:
1. Basic preprocessing. This step involved activities such as replacing
“don’t know” values to “missing”; replacing rare (i.e. with counts close to 1)
values of categorical variables by a similar but more common value or mark-
ing as “other”; ensuring consistency of values between two variables (e.g.
Client-server and Architecture); removing variables with too many states
and very few counts; removing variables with many unclear values (e.g.
Primary programming language, 1st hardware, 1st operating system); trans-
forming variables to their appropriate type (especially logical variables or
variables with mixed numeric or interval values); creating logical dummy
variables for multi-value categorical variables. This step prepared a dataset
to many types of possible future analyses.

Table 6.1. A list of variables used in analysis

Name Type N Notes
Meet stated objectives logical 89 outcome variable
Meet business requirements logical 89 outcome variable
Year of project integer 89 based on project completion date
Adjusted function points integer 65 also transformed by: ln(x)
Summary work effort integer 89 in hours; also transformed by: ln(x)
Total defects delivered integer 72 in the first month after release; also

transformed by: ln(x+1)
Development type nominal 89 new, enhancement, re-development
Architecture nominal 86 stand-alone, multi-tier/client-server

104 Software Engineering from Research and Practice Perspectives

Name Type N Notes

Client-server logical 86
Development platform nominal 82 PC, Mid-range/multi, mainframe
Language type nominal 78 3GL, 4GL
Used methodology logical 81
Resource level nominal 89 1-4, the way of recording effort
Debugging tools logical 72
Testing tools logical 72
Performance monitoring
tools

logical 68

User satisfaction survey logical 77
Survey respondent role nominal 86 customer/user, project manager, spon-

sor
Project activity scope logical 77 separate variables for: planning, speci-

fication, design, build, test, implement
Organization type logical 87 separate variables for: computers and

software, communications, financial,
manufacturing, professional services,
other

Application type logical 88 separate variables for: management
information system, network man-
agement, transaction/production sys-
tem

Productivity numeric 65 in function points per person-hour;
also transformed by: ln(x)

Proportion of effort on spec-
ification

numeric 67 also transformed by: sqrt(x)

Proportion of effort on build numeric 81

2. Data selection. This involved filtering the data to the cases with Data

quality rating set to “A” or “B” as suggested in [I05]; filtering the data
so that no attribute describing user satisfaction contains missing values;
and filtering the data so that no explanatory variable contains more than
30% of missing data.

3. Further preprocessing. This involved repetition of activities as in step
1, but performed on dataset reduced in step 2.

4. Defining additional variables. This involved creating variables such as
Productivity, Defect rate, and proportions of effort on specific activities
(see Table 6.1). These new variables were then filtered to also meet the
criteria for fraction of missing values.

How software development factors influence user satisfaction in meeting… 105

5. Defining transformed variables. Since some techniques that were

planned to use require normal distribution of variables, this step investi-
gated if such requirement is met and, if necessary, new variables were
created after applying commonly used transformations: ln(x), ln(x+1) or
sqrt(x) (see Table 6.1).

6. Defining outcome variables. The variables describing user satisfaction
are originally defined on a 1-4 ranked scale. Since the value “1” and “4”
are rare, outcome variables have been defined as logical, i.e. original
values “1” and “2” replaced by “false” and original values “3” and “4”
replaced by “true” – to indicate if the user satisfaction in particular as-
pect has been met in a project. Table 6.2 illustrates the distributions for
both outcome variables.

Table 6.2. Distributions for two outcome variables

 Meet stated objectives Meet business requirements
 false true false true

Counts 31 58 19 70

7. Final variable filtering. This involved removing variables not suitable
for causal analysis, e.g. Project Id, Data quality rating. Table 6.1 lists
variables used in analysis that were kept after this step.

8. Analysis of correlations for numeric explanatory variables. This is
the first step of the main part of the analysis. Since the outcome varia-
bles are dichotomous, this involved the use of a point biserial correlation
coefficient which is mathematically equivalent to Pearson product-
moment correlation coefficient (assuming encoding values “false”/”true”
to “0”/”1”) and its interpretation is also the same. Because this step in-
volved using the same statistical test multiple times, i.e. for many ex-
planatory variables, to reduce the risk of reporting false positive results,
obtained p values were adjusted according to the false discovery rate
(fdr) control [BH95]. This analysis was supported by investigating scat-
terplots, some of which have been discussed later in this chapter.

9. Analysis of associations for categorical and logical explanatory vari-
ables. This involved preforming Pearson’s chi-squared test or Fisher’s
exact test for each pair of outcome and categorical/logical explanatory
variable. The Pearson’s test has been performed when the following
conditions were met: a cross-tabulation in a form of z 2x2 table contains
at least 5 counts in each cell, in larger tables there are no cells with count
of zero and at least 80% of cells have counts of at least 5. Otherwise, the
Fisher’s test was performed. The p-values obtained in these tests have
also been adjusted with “fdr” (as explained in previous step). Statistical-

106 Software Engineering from Research and Practice Perspectives

ly significant relationships, i.e. with p adjusted ≤ 0.05, have been further
investigated by analyzing the effect size, i.e. the strength of the relation-
ship, using the following commonly used measures: phi, Cramer’s V,
Pearson’s contingency coefficient, and lambda coefficient.

10. Analysis of logistic regression models. The goal of this step was to in-
vestigate how each explanatory variable explains the variability of out-
come variables. Thus, we built a set of logistic regression models – one
for each pair of explanatory and outcome variables. Each of these mod-
els contains a single explanatory variable, i.e. it does not take into ac-
count any possible interactions between explanatory variables. Such as-
sumption was necessary because adding further variable(s) to the model
would result in the need to build the model using fewer cases – most ex-
planatory variables contain missing values and cases with missing values
for explanatory variables cannot be used to build the model.

11. Analysis of data-mining measures of associations. The goal of this
step was to support previous analyses by using other measures of associ-
ation that are frequently used in data-mining: ReliefF, information gain,
gain ratio, and Gini index. The last three measures require variables on
non-continuous scale. Thus, to calculate them, each numeric variable has
been discretized into five intervals.

12. Analysis of the CN2 rules [CN89]. The goal of this step was to learn a
set of “if-then” rules that would explain variability in the outcome varia-
bles. Such rules can be relatively easily interpreted by human and also
used for prediction. What is important, these rules capture the interaction
between explanatory variables. An earlier paper [R11b] demonstrated
that the CN2 algorithm can produce meaningful and useful rules.

Steps 1-10 were performed with the R statistical software environment [R14]
and steps 11-12 using Orange [DCE13].

6.3 Results

6.3.1 Statistical explanatory analysis

The first main step of the analysis was the investigation of relationship be-
tween numeric explanatory variables and each outcome variable. Table 6.3 lists
the values of point biserial correlation coefficient (rpb) and respective p values
(adjusted by “fdr”) for each analyzed pair of variables. There are four variables
in statistically significant relationship with MSO – one medium-strength posi-
tive relationship for the Year of project and three medium-strength negative
relationships: for Total defects delivered (ln), Adjusted function points (ln), and
Productivity (ln).

How software development factors influence user satisfaction in meeting… 107

No statistically significant relationship was found for MBR and any explana-

tory variable. Without adjusting the p value relationships with Year of project
and Adjusted function points (ln) would be statistically significant.

Table 6.3. Values of measures of association for numeric explanatory variables

Explanatory variable N Meet stated
objectives

Meet business
requirements

 rpb p adj. rpb p adj.
Year of project 89 0.40* 0.001 0.25 0.08
Adjusted function points (ln) 65 -0.29* 0.04 -0.28 0.08
Summary work effort (ln) 89 0.14 0.24 0.14 0.34
Total defects delivered (ln) 72 -0.40* 0.002 -0.10 0.59
Productivity (ln) 65 -0.29* 0.04 -0.24 0.13
Prop effort specify (sqrt) 67 -0.19 0.17 0.01 0.94
Prop effort build 81 -0.12 0.28 -0.02 0.94
* - significant at p adjusted. ≤ 0.05

Figure 6.1 illustrates relationships between strongest numeric explanatory

variables and two outcome variables – MSO (parts a and b) and MBR (parts c
and d). Parts (a) and (c) confirm that with increasing Year of project there are
more projects that satisfy both MSO and MBR. However, such straightforward
conclusion may be biased by two facts: First, many projects have a Year of pro-
ject with a single common value (2000). Second, there is no project with Year of
project higher than 2000 for which MSO and MBR were not satisfied. This,
based on literature and author’s knowledge, cannot be well justified by any the-
ory.

As expected, in projects with fewer defects users were more frequently satis-
fied in terms of MSO (Figure 6.1, part a). However, no such relationship was
found for MBR (Figure 6.1, part c).

Parts (b) and (d) show that with an increased project size (i.e. higher value of
Adjusted function points) the Productivity also increases. Furthermore, in the
group of larger projects, the proportion of projects with dissatisfied user in-
creases. However, probably because of imbalanced data, such relationship does
not appear to be significant for MBR (Figure 6.1, part d).

108 Software Engineering from Research and Practice Perspectives

Figure 6.1. Scatterplots for outcome variables and strong explanatory variables

Table 6.4 lists the results of investigating associations between MSO and

each explanatory variable. To save space, this table contains only these relation-
ships for which the test of independence confirms the existence of a statistically
significant relationship at p adjusted ≤ 0.05. The third column indicates the type
of independence test used (either Pearson’s chi-squared test or Fisher’s exact
test), the values of statistic of respective test (where appropriate), and the p val-
ue adjusted with “fdr”. The last three columns list a range of different measures
of effect size. Their values above 0.5 indicate strong relationship, within a range
(0.3, 0.5) – moderate, within a range (0.1, 0.3) – weak, and below 0.1 as no
relationship. Eight relationships were identified as statistically significant for
MSO – at moderate or weak strength. However, in some cases the values of
lambda coefficient were unexpectedly low (close to zero) even though other
measures of effect size indicate stronger relationship. In these cases, even
though there is some level of correlation, these explanatory variables have very

How software development factors influence user satisfaction in meeting… 109

low level of ability in predicting MSO. No relationship was found statistically
significant here for MBR.

Table 6.4. Values of measures of association for logical and nominal explanatory variables

Outcome Explanatory
Method
Statistic
P. adj.

Phi/
Cramer’s

V

Pearson’s
C Lambda

MSO Used methodology
Pearson
13.76
<0.01

0.44 0.40 0.41

MSO User satisfaction
survey

Pearson
18.05
<0.01

0.51 0.46 0.47

MSO Project activity
scope design

Fisher
∞

<0.01
0.49 0.44 0.00

MSO
Project activity
scope test

Pearson
7.06
0.03

0.33 0.31 0.10

MSO
Application type
transaction/ pro-
duction system

Fisher
4.83
0.03

0.30 0.29 0.00

MSO
Application type
management in-
formation system

Pearson
8.54
0.02

0.34 0.32 0.24

MSO Survey respondent
role

Fisher
–

<0.01
0.57 0.50 0.15

6.3.2 Modeling with logistic regression

Table 6.5 provides a list of logistic regression models built for MSO and
MBR. Each of these models contains a single explanatory variable and an inter-
cept term (b0). To save space, this table lists only these models that are statisti-
cally significant, i.e. for which p value adjusted with “fdr” is ≤0.05. For MSO
ten such models were found statistically significant and only one for MBR. The
algorithm for building a logistic regression model provides the values of coeffi-
cients in the form of log-odds. To make their interpretation simpler, Table 6.5
provides the values of these coefficients after applying transformation exp(b),

110 Software Engineering from Research and Practice Perspectives

i.e. in the form of odd ratios. For example, according to the model, when Total
defects delivered = 0, then the odds of reaching user satisfaction in MSO is
4.86. This can further be converted to probability of reaching user satisfaction in
MSO as 4.86/(1+4.86) = 0.83, which is quite high value – yet, expected when
there are no defects. For one unit increase in Total defects delivered we expect
to see a decrease in odds of reaching MSO to 0.67 of the odds without such
additional defect. In general, the value of)1,0()exp(0 ∈b indicates a multiplica-
tive decrease in the odds of reaching satisfaction in MSO for one unit increase
in value for particular explanatory variable, and the value of),1()exp(0 ∞∈b
indicates a multiplicative increase in the odds of reaching satisfaction in MSO.

Table 6.5. List of statistically significant logistic regression single-variable models

Outcome Explanatory P adj. Exp(b0) Exp(b1)
MSO Year of project <0.01 0.00 1.80

MSO Total defects deliv-
ered (ln)

<0.01 4.86 0.67

MSO Used methodology <0.01 0.70 7.19 (true)

MSO
User satisfaction
survey <0.01 0.64 11.31 (true)

MSO Project activity
scope - design

<0.01 0.87 1.33e+8 (true)

MSO
Project activity
scope - test <0.01 0.92 4.55 (true)

MSO
Application type -
transaction / produc-
tion system

<0.01 1.22 4.91 (true)

MSO
Application type -
management infor-
mation system

<0.01 3.64 0.23 (true)

MSO
Application type -
network manage-
ment

0.01 1.50 8.00 (true)

MSO
Survey respondent
role <0.01

20.00
(cust./user)

0.03 (project man.)
0.37 (sponsor)

MBR Survey respondent
role

<0.01 1.16e+8
(cust./user)

1.80e-8 (project man.)
4.54e-8 (sponsor)

How software development factors influence user satisfaction in meeting… 111

6.3.3 Rankings by data mining measures

Apart from using “traditional” statistical measures of association discussed
in earlier subsections, this analysis also investigated a range of measures that are
commonly used in data mining. One of the advantages of these measures is that
they can all be applied to any type of explanatory variable – however, for in-
formation gain, gain ratio, and Gini index, continuous variables need to be dis-
cretized into a set of intervals.

Table 6.6 illustrates the ratings for explanatory variables and each outcome
variable using mentioned data mining measures. The higher value of each
measure indicates a stronger relationship of particular pair of variables. This is
additionally visually indicated by the width of the horizontal bar. The list of
explanatory variables has been sorted according to the decreasing order of aver-
age strength of relationship calculated as an aggregate for both outcome varia-
bles and using all four measures. Thus variables at the top are with the strongest
relationship with both MSO and MBR. Due to space constraints this figure con-
tains the top 15 explanatory variables according to this overall rating.

Sorting a list of attributes according to each measure produces different or-
der of explanatory variables for each outcome variable. This is caused by the
fact that each measure focuses on different aspect of an association. For exam-
ple, for MSO the values of ReliefF, information gain and Gini index indicate
that Survey respondent role is the explanatory variable in the strongest relation-
ship with MSO. However, based on gain ratio, for MSO the strongest relation-
ship is with Project activity scope: design. According to the average ranking
from all four measures, the top six explanatory variables with the strongest rela-
tionship with MSO are: Survey respondent role, User satisfaction survey, Pro-
ject activity scope: design, Year of project, Application type: management in-
formation system, and Application type: transaction/production system. Surpris-
ingly, neither any variable indicating project size nor defectiveness was found
as strongly related with MSO.

As for MSO, also for MBR the values of ReliefF, information gain and Gini
index indicate that Survey respondent role is the strongest related variable with
MBR. However, based on gain ratio, for MBR the strongest relationship is with
Organization type: computers & software. According to the average ranking
from all four measures, the top six explanatory variables with the strongest rela-
tionship with MBR are: Survey respondent role, Productivity (ln), Year of pro-
ject, Organization type: computers and software, User satisfaction survey, and
Productivity.

112 Software Engineering from Research and Practice Perspectives

Table 6.6. Ratings for explanatory variables with data mining measures

6.3.4 Modeling with CN2 rules

Before investigation the details of the learnt CN2 rules, let us analyze the
performance of the models represented by these rules. This analysis involves a
range of measures: accuracy, F1 score, recall, precision, and Matthews correla-
tion coefficient (MCC). While each measure focuses on different aspect, the
interpretation of these measures is straightforward: values closer to 1 indicate
more accurate prediction while values closer to zero indicate inaccurate predic-
tion. The values of MCC can be negative to indicate predictions opposite to the
actual values.

Explanatory

R
el

ie
fF

In
f.

ga
in

G
ai

n
ra

tio

G
in

i i
nd

ex

R
el

ie
fF

In
f.

ga
in

G
ai

n
ra

tio

G
in

i i
nd

ex

Survey respondent role 0.24 0.26 0.17 0.07 0.38 0.14 0.09 0.03

User satisfaction survey 0.21 0.17 0.17 0.05 0.26 0.03 0.03 0.01

Year of project 0.06 0.26 0.14 0.06 0.11 0.08 0.05 0.02

Project activity scope: design 0.18 0.18 0.21 0.04 0.22 0.02 0.03 0.00
Organisation type: computers &
software

0.08 0.05 0.08 0.01 0.12 0.06 0.10 0.01

Application type:
transaction/production system

0.12 0.07 0.07 0.02 0.22 0.02 0.02 0.00

Organisation type: financial 0.10 0.04 0.08 0.01 0.07 0.02 0.04 0.01
Organisation type:
communications

0.07 0.04 0.06 0.01 0.05 0.03 0.05 0.01

Total defects delivered (ln) 0.00 0.09 0.04 0.03 0.13 0.03 0.01 0.01

Adjusted function points (ln) 0.03 0.03 0.01 0.01 0.09 0.06 0.03 0.01
Organisation type: professional
services

0.09 0.02 0.03 0.01 0.16 0.02 0.04 0.01

Summary work effort (ln) 0.07 0.02 0.01 0.01 0.16 0.05 0.02 0.01
Application type: network
management

0.08 0.05 0.08 0.01 0.08 0.01 0.02 0.00

Organisation type: other 0.12 0.02 0.02 0.01 0.03 0.03 0.04 0.01

Productivity (ln) 0.03 0.01 0.00 0.00 0.11 0.09 0.04 0.02

MSO MBR

How software development factors influence user satisfaction in meeting… 113

Table 6.7. Performance measures of generated CN2 rules

Outcome Validation Acc. F1 Recall Prec. MCC
MSO test on train

data 0.94 0.95 0.91 0.91 0.86

MBR test on train
data 1.00 1.00 1.00 1.00 1.00

MSO 10-fold CV 0.74 0.81 0.83 0.79 0.42
MBR 10-fold CV 0.78 0.87 0.94 0.80 0.15

Table 6.7 provides the values for performance measures of generated CN2

rules. Rules generated for both outcome variables provide very accurate predic-
tions when tested on the same dataset; for MBR they even perfectly explain the
relationships. To investigate the adequacy of the CN2 rule generation algorithm
we also analyzed performance achieved in 10-fold cross-validation. Naturally,
this yielded in lower values for each measure, but still quite high and compara-
ble with using other techniques, such as k-nearest neighbors, classification trees,
naïve Bayes or random forests. Thus, this demonstrates the adequacy of CN2
rules. Yet, the predictive aspect of such analysis will be investigated in future
studies.

Table 6.8 lists the rules learnt for MSO. We can observe that these rules use
explanatory values already identified as related with MSO: Total defects deliv-
ered, Adjusted function points or User satisfaction survey. However, some of
these rules also use Summary work effort, Prop. of effort on build or Develop-
ment platform, i.e. explanatory variables that were earlier not identified as relat-
ed with MSO. This is caused by the fact that earlier techniques were focused on
investigating relationships in pairs, i.e. one explanatory variable for one out-
come variable. These rules have the ability to capture information on the inter-
actions between explanatory variables. Unfortunately, the quality of some rules
is not high (i.e. closer to zero than to one). Furthermore, some rules cover very
few projects – even single one at the extreme.

As for MSO, we also generated a set of CN2 rules for MBR (Table 6.9).
Here, we can also see a similar set of explanatory variables that are used in the-
se rules. The most important are: Survey respondent role, Used Methodology,
Summary work effort, Adjusted function points.

Some rules can be easily interpreted and justified causally by the theory of
software engineering. For example, a rule “IF Total Defects Delivered>1121
THEN Meet stated objectives=FALSE” means that if there are large number of
defects then we should expect not meeting stated objectives. As another exam-

114 Software Engineering from Research and Practice Perspectives

ple let us analyze a rule “IF Used Methodology=FALSE AND Total Defects
Delivered>5 AND Application Type: Network Management=FALSE THEN
Meet stated objectives=FALSE”. The first two conditions are straightforward –
the project does not use any methodology and delivers more than 5 defects (i.e.
at least the median of 6 in this dataset). In this case we really should expect no
satisfaction in meeting stated objectives. The key is the threshold of tolerable
number defects that depends on application type. For network management
applications this threshold is typically set to a low value, whereas for other
types of application (i.e. perhaps for business use or gaming) it may be higher.

Table 6.8. Rules induced for MSO

Rule
quality

Coverage
false/true Rule

0.29 20:5
IF Used Methodology=FALSE AND Total Defects Deliv-
ered>5 AND Application Type Network Manage-
ment=FALSE THEN Meet stated objectives=FALSE

0.46 6:0
IF Survey respondent role=Project manager AND Sum-
mary Work Effort<=898 AND Project Activity Scope
Planning=TRUE THEN Meet stated objectives=FALSE

0.55 3:0

IF Adjusted Function Points>457 AND Summary Work
Effort>4584 AND Client Server=TRUE AND Summary
Work Effort<=9653 THEN Meet stated objec-
tives=FALSE

0.48 1:0 IF Total Defects Delivered>1121 THEN Meet stated ob-
jectives=FALSE

0.98 1:0 IF Year of Project>2005 AND Prop Effort Build<=0.00
THEN Meet stated objectives=FALSE

0.20 1:36 IF User satisfaction survey=TRUE AND Summary Work
Effort>300 THEN Meet stated objectives=TRUE

0.17 2:9 IF Adjusted Function Points<=250 AND Prop Effort
Build>0.00 THEN Meet stated objectives=TRUE

0.26 2:7
IF Adjusted Function Points>649 AND Development Plat-
form=PC AND Summary Work Effort<=4167 THEN
Meet stated objectives=TRUE

0.43 1:4 IF Summary Work Effort>2102 AND Total Defects De-
livered<=290 AND Adjusted Function Points>649 THEN

How software development factors influence user satisfaction in meeting… 115

Rule

quality
Coverage
false/true Rule

Meet stated objectives=TRUE

0.94 0:2 IF Adjusted Function Points>9296 AND Total Defects
Delivered>38 THEN Meet stated objectives=TRUE

However, there are some rules that can be hardly explained by a theory. For

example, let us analyze a rule “IF Survey respondent role=Project manager
AND Summary Work Effort<=898 AND Project Activity Scope Plan-
ning=TRUE THEN Meet stated objectives=FALSE”. Over 64% of projects
meet the condition for effort. For this rule we cannot find a justification that in
these projects when a project involves the planning stage and the survey results
are provided by a project manager then we should expect no satisfaction in
meeting stated objectives.

Table 6.9. Rules induced for MBR

Rule
quality

Coverage
false/true Rule

0.25 6:0
IF Survey respondent role=Project manager AND Used
Methodology=TRUE AND Summary Work Effort<=1462
THEN Meet business requirements=FALSE

0.32 5:0
IF Adjusted Function Points>594.00 AND Prop Effort
Specify<=0.00 AND Adjusted Function Points>738
THEN Meet business requirements=FALSE

0.34 3:0 IF Productivity>0.00 AND Project Activity Scope Plan-
ning=FALSE THEN Meet business requirements=FALSE

0.56 3:0

IF Organization type Other=TRUE AND Application Type
Management Information System=FALSE AND Year of
Project<=2003 THEN Meet business require-
ments=FALSE

0.97 2:0 IF Summary Work Effort>9076 AND Summary Work
Effort<=9653 THEN Meet business requirements=FALSE

0.09 0:29
IF Total Defects Delivered<=7 AND Summary Work Ef-
fort>300 AND Organization type Other=FALSE THEN
Meet business requirements=TRUE

0.14 0:18 IF Adjusted Function Points<=781 AND Project Activity

116 Software Engineering from Research and Practice Perspectives

Rule

quality
Coverage
false/true Rule

Scope Test=FALSE AND Adjusted Function Points>22
THEN Meet business requirements=TRUE

0.20 0:10
IF Prop Effort Specify>0.00 AND Summary Work Ef-
fort>1779 AND Project Activity Scope Planning=TRUE
THEN Meet business requirements=TRUE

0.39 1:10
IF Application Type Transaction/Production Sys-
tem=TRUE AND Summary Work Effort>207 THEN Meet
business requirements=TRUE

0.86 0:3

IF Summary Work Effort>5541 AND Application Type
Management Information System=TRUE AND Total De-
fects Delivered<=500 THEN Meet business require-
ments=TRUE

6.4 Limitations and threats to validity

Results obtained in this study are subject to some limitations and threats to
validity. First, the dataset used in analysis is not a random sample from popula-
tion. Initially, ISBSG gathers data from organizations that are willing to share
them. Then, this analysis involved the use of a carefully selected subset of the
whole ISBSG dataset, as explained in Section 2. Thus, obtained results cannot
be generalized to the whole population of projects.

Second, the dataset contains many missing variables. For this reason many
variables have not been used at all, while other still have up to 30% of missing
values which (1) may bias the results of single-explanatory-variable mod-
els/tests and (2) make it difficult to build multi-variable models.

Next, this analysis involved statistical testing of multiple hypotheses. To mit-
igate the problem of incorrect reporting inflated number of significant results a
false discovery rate control was used to adjust obtained p values.

Furthermore, the analysis of pairs of variables involved pairwise removing
cases with missing values. Thus, some relationships cover different projects
than other relationships.

Finally, the analysis, especially preprocessing steps, involve subjective deci-
sions, for example on grouping states of categorical variables, setting threshold
for fraction of missing values, choosing type of variable transformation, etc.

How software development factors influence user satisfaction in meeting… 117

6.5 Conclusions and future work

Obtained results lead to formulating the following conclusions:
1. Although two investigated outcome variables, satisfaction in meeting

stated objectives and in meeting business requirements seem to describe
similar phenomena, there are different explanatory variables in relation-
ships with each outcome variable. I.e. some variables that are related
with MSO do not seem to be related with MBR, yet the opposite is less
likely.

2. Survey respondent role is the explanatory variable with the strongest re-
lationship both for MSO and MBR. To put it simple: it matters mostly
who you ask about user satisfaction in terms of meeting stated objectives
and business requirements.

3. For user satisfaction in meeting stated objectives the strongest relation-
ships are with the following variables individually: Survey respondent
role, Year of project, Total defects delivered (ln), User satisfaction sur-
vey, Project activity scope: design, Application type: management in-
formation system, Application type: transaction/production system, and
Adjusted function points (ln).

4. For user satisfaction in meeting business requirements the strongest rela-
tionships are with the following variables individually: Survey respond-
ent role, Productivity (ln), Year of project, Organization type: computers
and software, User satisfaction survey, Adjusted function points, and
Summary work effort.

5. Analysis of pure quantitative measures of correlation/association may be
misleading and should be supported by other techniques, such as scatter-
plots, that may reveal issues not directly encoded in specific numeric
measure.

6. It is difficult to investigate the relationship of interactions between ex-
planatory variables and outcome variable because of relatively high frac-
tion of missing values in explanatory variables.

In future, this analysis will be extended to answer other important questions
related to the impact of software development on user satisfaction. It may in-
volve the use of other features of user satisfaction than selected for this analysis.
It may also focus on prediction of user satisfaction based on software develop-
ment characteristics. For example, the previous papers focused on developing a
framework [R11a] for building a Bayesian network model [R13] for software
quality simulation and prediction, where user satisfaction is one of many fea-
tures describing software quality. Such model can be updated by the results of
this study.

118 Software Engineering from Research and Practice Perspectives

References

[BH95] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and power-
ful approach to multiple testing. Journal of the Royal Statistical Society, Series B, vol.
57, no. 1, 1995, pp. 289–300.

[B05] Bokhari, Rahat H.: The relationship between system usage and user satisfaction: a
meta-analysis. Journal of Enterprise Information Management, vol. 18, no. 2, 2005,
pp. 211–234.

[C11] Catal C., Software fault prediction: A literature review and current trends. Expert
Systems with Applications, vol. 38, no. 4, 2011, pp. 4626–4636.

[CN89] Clark P., Niblett T., The CN2 Induction Algorithm, Machine Learning, vol. 3, no. 4,
1989, 261-283.

[DCE13] Demšar, J., Curk, T., & Erjavec, A. Orange: Data Mining Toolbox in Python; Journal
of Machine Learning Research, vol. 14, 2013, 2349−2353.

[FM04] Fenton N., Marsh W., Neil M., Cates P., Forey S., Tailor M., Making Resource Deci-
sions for Software Projects. In: Proceedings of the 26th International Conference on
Software Engineering. Washington, DC: IEEE Computer Society, 2004, pp. 397–406.

[FG14] Fernández-Diego M., González-Ladrón-de-Guevara F., Potential and limitations of
the ISBSG dataset in enhancing software engineering research: A mapping review, In-
formation and Software Technology, vol. 56, no. 6, 2014, pp. 527–544.

[HB12] Hall T., Beecham S., Bowes D., Gray D., Counsell S.,A Systematic Literature Review
on Fault Prediction Performance in Software Engineering. In: IEEE Transactions on
Software Engineering, vol. 38, no. 6, 2012, pp. 1276–1304.

[I05] ISBSG, ISBSG Comparative Estimating Tool V4.0 – User Guide, International
Software Benchmarking Standards Group, 2005, www.isbsg.org.

[I09] ISBSG Repository Data Release 11, International Software Benchmarking Standards
Group, 2009, www.isbsg.org.

[KJ13] Khatibi Bardsiri V., Jawawi D. N., Hashim S. Z., Khatibi E., A PSO-based Model to
Increase the Accuracy of Software Development Effort Estimation, Software Quality
Journal, vol. 21, no. 3, 2013, pp. 501–526.

[K93] Krishnan M.S., Cost, quality and user satisfaction of software products: an empirical
analysis. In: Proceedings of the 1993 conference of the Centre for Advanced Studies
on Collaborative research: software engineering. vol. 1, IBM Press, 1993, pp. 400–
411.

[ML08] Mendes E., Lokan C., Replicating studies on cross- vs single-company effort models
using the ISBSG Database, Empirical Software Engineering, vol. 13, no. 1, 2008, pp.
3-37.

[MAD12] Mitakos T.N., Almaliotis I.K., Demerouti A.G., What Factors Influence ERP User
Satisfaction?: Perceived Usefulness and Self-Efficacy as Key Directors of the ERP
User Satisfaction, LAP Lambert Academic Publishing, 2012.

[P08] Prasad, V.C.S., Complexities in user satisfaction issues during organisational diffu-
sion of in-house developed new technology tools: the case of an Indian IT company.
International Journal of Information Technology and Management, vol. 7, no. 3,
2008, pp. 315–326.

[PP13] Proynova R., Paech B., Factors influencing user feedback on predicted satisfaction
with software systems. In: Doerr, J. ; Opdahl, A. L. (eds.): Requirements Engineering:

How software development factors influence user satisfaction in meeting… 119

Foundation for Software Quality, Lecture Notes in Computer Science. vol. 7830. Ber-
lin, Heidelberg: Springer, 2013, pp. 96–111.

[R11a] Radliński Ł., A Framework for Integrated Software Quality Prediction using Bayesian
Nets, In: Proceedings of International Conference on Computational Science and Its
Applications, Santander: Springer, 2011, LNCS vol. 6786, pp. 310-325.

[R11b] Radliński Ł., Factors of Software Quality – Analysis of Extended ISBSG Dataset,
Foundations of Computing and Decision Studies, vol. 36, no. 3-4, 2011, pp. 293-313.

[R12] Radliński Ł., Empirical Analysis of the Impact of Requirements Engineering on Soft-
ware Quality, In: Proc. International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality, Essen: Springer, 2012, LNCS vol. 7195, pp.
232-238.

[R13] Radliński Ł., An expert-driven Bayesian network model for simulating and predicting
software quality, In: Proc. Fifth International Conference on Information, Process,
and Knowledge Management, Nice, France, 2013, pp. 26-31.

[RC10] Raza A., Capretz L.F., Ahmed F., Improvement of Open Source Software Usability:
An Empirical Evaluation from Developers’ Perspective. Advances in Software Engi-
neering, vol. 2010, 2010, pp. 1–12.

[R14] R Core Team (2014). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

[SBH14] Shepperd M., Bowes D., Hall T, Researcher Bias: The Use of Machine Learning in
Software Defect Prediction. IEEE Transactions on Software Engineering, vol. 40,
no. 6, 2014, 603–616.

[SW10] Subramanyam R., Weisstein F.L., Krishnan M.S., User participation in software
development projects. Communications of the ACM, vol. 53, no. 3, 2010, p. 137-141.

[TT10] Tarafdar M., Tu Q., Ragu-Nathan T.S., Impact of Technostress on End-User Satisfac-
tion and Performance. Journal of Management Information Systems, vol. 27, no. 3,
2010, pp. 303–334.

[W88] White S. D., An Empirical Study of the User Satisfaction of Accountants with the
Software Maintenance Function, University of Arkansas, 1988.

[WT05] Wixom B.H., Todd P.A., A Theoretical Integration of User Satisfaction and Technol-
ogy Acceptance. Information Systems Research, vol. 16, no. 1, 2005, pp. 85–102.

PART III
SOFTWARE ARCHITECTURE

AND DESIGN

Chapter 7

Comparison of selected ESBs on the
base of ISO standards

Many IT companies face the problem of software integration. Application of an Enterprise Ser-
vice Bus (ESB) is one of possible solution to it. There are many ESBs available on the market,
differing with basic properties, important from the programmers’ perspective. The aim of the
chapter is to compare the quality of selected, free ESBs (Mule ESB, JBoss ESB, WSO2).
The quality model for tools comparison was built with the use of ISO 9216 standards. The evalua-
tion partially involved an experiment. According to the quality model WSO2 was the best ESB.

Nowadays, software systems written in different programming languages,
and run on different platforms, need to communicate each other. The integration
problem can be solved in different ways, but the use of Service Oriented Archi-
tecture (SOA) seems to be a very beneficial solution [EM1]. The important part
of SOA is an Enterprise Service Bus (ESB), a middleware which enables com-
munication with the messages exchange between services.

There are many ESBs available on the market, both paid and free. They dif-
fer with their functionality as well as some quality attributes, e.g., performance.
The aim of the research presented in this chapter was to compare selected,
freely available service buses. For comparison, we chosen the following plat-
forms:

1) Mule ESB 3.4.2
2) JBoss ESB 4.12
3) WSO2 ESB 4.8
The selected solutions are frequently used in practice, and are well docu-

mented. Three of the most popular books about ESBs are about chosen systems
(“Mule in Action” written by David Dossot and John D’Emic, “JBoss ESB be-
ginner’s Guide” by Len DiMaggio and Kevin Conner and “Enterprise Integra-
tion with WSO2 ESB” by Prabath Siriwardena). Their popularity has been
proved by the number of books sold in Amazon shop and readers in Safari
Books Online site.

The evaluation took into account features pointed out as the most important
by programmers. This quality perspective is often neglected in similar resear-
ches, we managed to find. It must be mentioned that there are not many results
of ESB comparisons published in available literature. For example the goal of
[INT] was to analyze interoperability of three ESBs (Mule ESB, Fuse ESB,
GlassFish ESB) for C4I system. The interoperability was understood as seman-

124 Software Engineering from Research and Practice Perspectives

tic, syntactic, and network interoperability. The winner was Mule ESB which
beat the competitors with 1 or 2 points. In [RW24] one can find the comparison
of five ESBs (Mule ESB, BEA AquaLogic, Apache ServiceMix, Fiorano, IBM
WebSphere ESB) done mainly from functional perspective, with additional
elements (price and support). Similarly to the previous research the best solution
appeared to be Mule ESB. Comparison of the efficiency of three ESBs (Mule
ESB, WS02, and ServiceMix) is the main interest of [SP4]. The comparison
was based on experiments implementing 3 different test scenarios. Here, Ser-
viceMix was selected as the best solution followed by WS02.

The quality model used for tools evaluation in our research was proposed on
the base of ISO 9126 standard. We decided to use the older standard ISO 9126
not the newer one from the series ISO 25000 because its part ISO 25020, defin-
ing the measures, is still unavailable.

7.1 Overview of the selected ESBs

Mule ESB software is being developed by MuleSoft company. The first re-
lease was issued in 2005 making it one of the first Enterprise Service Bus plat-
forms. It is characterized by a simple and clear construction. It has two versions:
free Community and paid Enterprise version. Creating applications for this
system is easier with usage of Mule Studio (based on Eclipse platform)
[DD168].

WSO2 first version was developed in 2007. It is one of the few enterprise
Service Bus platforms based on OSGi technology. It is characterized by strong
support for Active MQ and Axis1. An important function in WSO2 system is a
possibility to hot application deploying and support for load balancing [SP86].
It also has installed some security modules, e.g. WS-Addressing, WS-Security,
and WS-RM.

 First version on JBoss ESB platform was developed in 2006 and was based
on Rosetta ESB [DL69]. Same as Mule ESB this platform has two versions free
Community and paid Enterprise.

7.2 Comparative procedure

7.2.1 Quality model

Quality model used in our research was based on ISO/IEC 9126 standard
[ISO1]. We decide to use this norm instead of ISO 25000 because the older and
newer standards have the same comparative model. Newer ISO 25000 has more

Comparison of selected ESB on the base of ISO standards 125

extensive characteristics and sub characteristics section but in our research norm
9126 is sufficient. This norm focuses on evaluation of software systems. It in-
troduces seven quality characteristics, which in turn consist of sub-
characteristics. This standard is very flexible and allows using only selected
parts.

To limit the scope of interest to the most important quality characteristics
from the users’ point of view, we prepared and conducted a questionnaire. The
survey was carried out on 30 people from one IT company. The questionnaire
was filled by 12 developers, 6 software architects, 5 analytics, 5 testers, and 2
management team members.

 Respondents were asked which characteristics are the most important for
Enterprise Service Bus. The question in which we ask about importance of
quality characteristic was formulated as followed: “Rate (from 1 to 3) the im-
portance of ISO-9126 characteristic where 3 means very important, 2 – im-
portant, 1 – unimportant”. The results let us to limit further considerations to
three quality characteristics (functionality, usability, efficiency) that exceeded
the 20% threshold. Characteristics which had less points than 20% of all points
have been omitted as less important for ESB comparison.

The weights of quality characteristics, further used in assessment function,
were calculated according to the Equation 7.1.

 𝑤! =
!!
!!
 (7.1)

where:
⎯ 𝑤! denotes the weight of i-characteristic
⎯ 𝑝! denotes the sum of points earned by i-characteristic
⎯ 𝑠! denotes the sum of points of three selected characteristic

 Table 7.1 presents weights of selected quality characteristics calculated with

the previously defined formula (7.1).

Table 7.1. Weights of selected quality characteristics.

Quality
characteristic

Weight

Functionality 0.43
Usability 0.29

Efficiency 0.28

126 Software Engineering from Research and Practice Perspectives

Every quality characteristic in ISO-9126 standard contains a number of sub-

characteristics. Therefore the second aim of the survey was to select only one –
the most important – sub-characteristic for every quality characteristic. Re-
spondents were asked to choose one sub-characteristic (the most important from
their perspective) for every quality characteristic on the basis of their defini-
tions. In Table 7.2 selected sub-characteristics are gathered.

Table 7.2. Selection of interesting sub-characteristics for quality characteristics.

Characteristic Sub-
characteristic

Functionality Suitability
Usability Learnability

Efficiency Time Behavior

Equation 7.2 presents the formula of the final assessment function.

 𝐹! = 0.43 ∗ 𝑐ℎ! + 0.29 ∗ 𝑐ℎ! + 0.28 ∗ 𝑐ℎ! (7.2)

where
⎯ 𝐹! denotes the value of evaluation function
⎯ 𝑐ℎ! denotes the result of functionality characteristic assessment (value
of suitability metric)
⎯ 𝑐ℎ! denotes the result of usability characteristic assessment (value of
learnability metric)
⎯ 𝑐ℎ! denotes the result of efficiency characteristic assessment (value of
suitability metric)

Each chi gains real values between 0 and 1.0.

7.2.2 Assessment of functionality

Suitability was chosen as the most important sub-characteristic of functional-
ity. ISO-9126 standard defines that suitability „determines whether the software
has been implemented all the necessary functions required by the user in his
daily work. In addition, we include here all the obvious features of the software”
[AA5].

Equation 7.3 specifies a metric which is used to calculate functionality. It is
defined as the ratio of the number of functions implemented in the system to the
expected number of functions [ISO1].

Comparison of selected ESB on the base of ISO standards 127

 𝑋 = 𝐴/𝐵 (7.3)

where:
⎯ X denotes the value of functionality assessment
⎯ A denotes the number of functions implemented in the system
⎯ B denotes the expected total number of functions in the system

The following are the properties which Enterprise Service Bus should have

according to [RW24]:
⎯ Support for Enterprise Integration Patterns
⎯ Support for Web Services
⎯ Support for HTTP Services
⎯ Support for REST
⎯ Support for SOAP1.1/SOAP1.2
⎯ SOA full platform (ESB, Message Broker, Business Process Server, Da-

ta Services Server, Application Server)
⎯ SOA Governance
⎯ Dedicated IDE
⎯ Cloud Connectors

Table 7.3. Assessment of functionality.

ESB Plat-
form

Number of
functions
correctly

implemented
in the system

Expected total
number of

functions in
the system

Calculation
Result

WSO2 10 10 1
Mule ESB 8 10 0.8

 JBoss ESB 9 10 0.9

Table 7.3 shows results for functionality metric calculated for every consid-

ered ESB platform. Only one system (WSO2) meets all basic, but most im-
portant functions. JBoss ESB and Mule ESB don’t offer the full support for
SOA Governance and Mule ESB also doesn’t implement SOA Platform in the
whole.

128 Software Engineering from Research and Practice Perspectives

7.2.3 Assessment of usability

The second characteristic selected by respondents was usability. As shown in
Table 7.2 the most important sub-characteristic in this case was learnability.
ISO-9126 defines learnability as „metrics that assesses how long users take to
learn, how to use particular functions, and the effectiveness of help systems and
documentation” [AA5].

Equation 7.4 specifies the metric which is used to calculate learnability. It is
defined as the ratio of the number of functions described in a tutorial to the ex-
pected number of functions that should be described in it [ISO1].

 𝑋 = 𝐴/𝐵 (7.4)

where
⎯ X denotes the value of learnability
⎯ A denotes the number of functions described in a tutorial
⎯ B denotes the expected total number of functions described in a tutorial

The list below indicates the most important basic functions which are very

useful at the beginning of the work with Service Buses. This list was prepared
based on examples given in [RD38]:

⎯ Short introduction to dedicated IDE
⎯ Deploying simple application
⎯ Using messages flow
⎯ Starting/Stopping server
⎯ System Monitoring
⎯ Creation of simple Proxy application

Table 7.4. Assessment of usability.

ESB Plat-
form

Number of
functions

described in
tutorial

Expected
number of

functions de-
scribed in tu-

torial

Calculation
Result

WSO2 4 6 0.67
Mule ESB 4 6 0.67

 JBoss ESB 2 6 0.33

Comparison of selected ESB on the base of ISO standards 129

Table 7.4 shows results for usability assessment. This characteristic was

evaluated by learnability sub-characteristic. It can be noted that none of these
three Enterprise Service Buses offers a good tutorial. WSO2 and Mule ESB
gained the same amount of points. The JBoss ESB tutorial was the worse. The
tutorials were taken from [WS1], [ME1], [JB1].

7.2.4 Assessment of efficiency

Based on the results of the survey, time behavior was chosen as the most ap-
propriate sub-characteristic to study efficiency of each Enterprise Service Bus.
To test this property a simple application for each tested system was prepared.
The application runs the following scenario (ESB perspective):

1) Receive a message,
2) Add text “hello” to the sent message,
3) Send back the message.

As shown in Figure 7.1, the test system consisted of two parts:
1) Test system – based on JMeter application,
2) Enterprise Service Bus with simple logic implemented (request-response

application shown above).

Figure 7.1. System to test time behavior of Enterprise Service Bus

JMeter application responsibility is presented below:

1) Prepare a message,
2) Send a specific number (10, 100, 500, 1000, 3000) of messages concur-

rently
3) Receive a message and validate it,
4) Generate reports from tests.

The tests were conducted in local testing environment (one node) using the fol-
lowing hardware and software platforms:

⎯ Windows 7 64 bit Professional,
⎯ RAM – 8GB,
⎯ Processor – Intel Core i5.

Test System ESB with some
simple logic

130 Software Engineering from Research and Practice Perspectives

To calculate time behavior was used Equation 7.5 which is based on the re-

sponse time metric from ISO – 9126.

𝑋 = 1 − !!
!

 , (7.5)
where
⎯ X denotes the value of efficiency assessment
⎯ 𝑝! denotes the average response time of i-system measured in millisec-
onds
⎯ 𝑠 denotes the sum of average response times for all systems measured in
milliseconds.

Time behavior was checked for 10, 100, 500, 1000, 3000 massages sent at the

same time.
Table 7.5 shows results for efficiency assessment. This characteristic was

evaluated by time behavior sub-characteristic. WSO2 gained the highest number
of points 0.71. Mule ESB had similar result equal 0.69. System with smallest
number of points and thereby with the worst response time was JBoss ESB.

Table 7.5. Assessment of efficiency.

ESB Plat-
form

Average
response

time

Sum of aver-
age response
times for all

systems

Calculation
Result

WSO2 222.8 770.4 0.71
Mule ESB 234.8 770.4 0.69

 JBoss ESB 312.8 770.4 0.59

7.2.5 Summary

Final assessment results were calculated with Equation 7.2. Partial scores
were shown in tables 7.3, 7.4, 7.5.

Table 7.6. Final results of assessment.

Characteristic Mule
ESB

JBoss ESB WSO2

Functionality 0.80 0.90 1.00
 Usability 0.67 0.33 0.67

Comparison of selected ESB on the base of ISO standards 131

Characteristic Mule

ESB
JBoss ESB WSO2

 Efficiency 0.9 0.59 0.71
Final result 0.3 0.67 0.82

System which obtained the largest number of points was WSO2. The final

result achieved by this platform was 0.82. In the second place – with a score of
0.73 – was Mule ESB. Third place among selected systems took JBoss ESB
with a score of 0.67.

It can be seen that each of the compared platforms has their strengths and
weaknesses. Mule ESB has the best help and support to programmers. It also
obtained a very good result in performance testing.

JBoss ESB has a lot of features and is adopted to work with many systems.
Unfortunately, a disadvantage of this ESB is relative low performance and diffi-
cult in reading documentation.

WSO2 platform is the winner in two categories, functionality and efficiency.
A little worse result it reached in the usability characteristic.

After analyzing the results it can be stated that during selecting the right En-
terprise Service Bus, when functionality, usability and efficiency are important,
then a user might be interested in WSO2 platform.

7.3 Conclusions

Integration problems today are often solved with the use of an Enterprise Ser-
vice Bus. Selection of the proper tool adjusted to specific company goals is not
easy. Existing ESBs are rather complex, and differ significantly in the offered
features, support and run-time characteristics.

The chapter presents the comparison of three, popular, freely available
ESBs: WSO2, Mule ESB, and JBoss ESB. The comparison was done from pro-
grammer’s perspective. On the basis of the survey conducted among program-
mers we selected the most important quality characteristics and their sub-
characteristics. We limit the scope of our interest to only one sub-characteristic
in every category i.e. suitability for functionality assessment, learnability for
usability assessment, and time behavior for efficiency assessment. We tried to
adapt ISO 9126 measures to assess individual sub-characteristics whenever it
was possible, and propose some measures (e.g. Equation 7.5) otherwise. Ac-
cording to proposed quality model (Equation 7.2) WSO2 was selected as the
best ESB among three considered. It should be noted that WSO2 was the best
solution in all categories (functionality, usability, and efficiency).

132 Software Engineering from Research and Practice Perspectives

In the future we are going to extend the quality model with more metrics and

other quality sub-characteristics.

References

[AA5] Alain A. ISO 9126: Analysis of Quality Models and Measures, Published Online,
2010

[AN1] Abdullah Alghamdi, Muhammad Nasir, Iftikhar Ahmad, Khalid A. Nafjan, An
Interoperability Study of ESB for C4I Systems. Information Technology (ITSim),
2010 International Symposium in (Volume:2), June 2010

[DD168] Dossot D. „Mule in Action. Second Edition”. Manning, 2012
[DL69] DiMaggio L., “JBoss ESB Begginer’s Guide”, Packt Publishing, 2012
[ISO1] ISO/IEC TR 9126-3 Software Engineering – Product quality – Part 3: Internal met-

rics, 2002
[RD38] Tijs Rademakers; Jos Dirksen. Open Source ESBs in Action: Example Implemen-

ation in Mule and Service Mix, November 2008
[RW24] Robert Wooley Enterprise Service Bus (ESB) Product Evaluation Comparison. Utah

Department Of Technology Services, October 2006
[SP4] Sanjay P, Amit Pattel. Enterprise Service Bus: A performance Evaluation. Commu-

nications and Network, August 2011
[SP86] Siriwardena, P. “Enterprise Integration with WSO2 ESB”, Packt Publishing, 2013
[UT20] K. Ueno and M. Tatsubori, “Early Capacity Testing of an Enterprise Service Bus,”

IEEE International Conference on Web Services, Chicago, 18-22 September 2006
[ZC1] G. Ziyaeva, E. Choi and D. Min, “Content-Based Intelligent Routing and Message

Processing in Enterprise Service Bus,” International Conference on Convergence
and Hybrid Information Technology, Washington, August 2008

Chapter 8

Architectural patterns applied in Internet of Things

The chapter presents discussion on applying architectural patterns in Internet of Things system
class. Internet of Things was partitioned into three application fields: smart home, healthcare and
retail. For each of application field there are identified most important architectural drivers and
according to them are proposed a few architectural patterns in different architectural views. This
chapter discusses issues that each pattern addresses as well as advantages and disadvantages of
each pattern in context of Internet of Things.

Internet of Things (IoT) as a vision of a world-wide network of interconnect-
ed objects [SS08] is a very promising concept however still in an early stage of
development. Most of existing IoT setups are laboratory or experimental size.
This is the motivation to deliberate on IoT concept on architectural level, that
helps to abstract from implementation matters. Architectural pattern is a stand-
ard design or solution in the field of software architecture [BU96]. In general
architectural patterns are identified in existing set of software systems, where
the similar problem was solved in a similar manner. Architectural patterns are
proposed on the basis of classification of problems and solutions that exist in
the moment of pattern creation. In case of IoT systems such methodology is not
possible as there is not enough experience in IoT deployment. Our research is
based on searching for analogies in existing software systems to IoT vision.

In order to document architectural patterns following approach was applied.
Patterns are described in context of application fields of IoT. Three application
fields has been selected: smart home, healthcare and retail. These three fields
represent most beneficial and most promising IoT applications from one side
and IoT in these fields seems to be most matured. For each application field
there is selected one use case representing IoT. Subsequently two or three archi-
tectural patterns in different views/perspectives are enlisted. Each architectural
pattern description consists of: pattern context, IoT Domain Model elements
instantiated to pattern elements, detailed pattern elements and analogies of pat-
tern application in non-IoT systems.

8.1 State of the art

8.1.1 Internet of Things

Internet of Things as a concept has many definition, among which the most
useful is the one proposed by Haller [HA10]: “a world where physical objects are

134 Software Engineering from Research and Practice Perspectives

seamlessly integrated into the information network, and where the physical objects can
become active participants in business processes. Services are available to interact with
these 'smart objects' over the Internet, query and change their state and any information
associated with them, taking into account security and privacy issues”. The idea exists
for many years (previously known as ubiquitous computing or pervasive compu-
ting) but recently it gained a lot of attention and feasibility due to development
in electronic miniaturization, development of the Internet and generally com-
munication protocols. Research on the IoT concept is conducted on many fields
[GU13]: communication protocols, energy harvesting and management, securi-
ty, interoperability, data management and IT architectures. The chpater is fo-
cused on IT system architecture supporting IoT.

Comprehensive research in the field of architecture for IoT is presented in
[BA13]. The book presents Architecture Reference Model (ARM) for IoT. Im-
portant part of ARM is IoT Domain Model [BA11] that is presented in Figure
8.1. Physical objects that are integrated into network are represented by Physi-
cal Entity class. Physical Entity is an abstraction of physical Device that con-
sists of tags, actuators and sensors. These objects are represented in information
domain by Virtual Entity. Virtual Entity objects can be passive (referencing to
device containing sensors and/or tags) or active (containing actuators). Capabili-
ties of Virtual Entity is exposes by Service.

Elements of the IoT Domain Model is used in the chapter as base for appli-
cation architecture patterns.

IoT Domain Model and IoT ARM is based on Service-Oriented Architecture
concept. Such approach is widely adopted in architecture considerations on IoT
[SP09, TH11].

8.1.2 Architectural patterns

Architectural patterns [AZ05, BU96] are well established and recognized ar-
chitectural solutions of known problems. Patterns help to document design deci-
sions, improve communication between groups of architecture stakeholders, and
offer a common architectural vocabulary.

According to [BU96]: “Every pattern deals with a specific, recurring problem in
the design or implementation of a software system. Patterns can be used to construct
software architectures with specific properties.”

Due to above statement patterns are proposed as a result of analyzing previ-
ously implemented software systems. Solutions that were successfully used in
previously occurred architectural problems are generalized to patterns. This is
challenge in applying patterns in case of IoT systems, as there is not much expe-

Architectural patterns applied in Internet of Things 135

rience in large-scale IoT installations. However in this chapter we are trying to
find analogies in non-IoT systems as premises to use them in the IoT field.

Figure 8.1. IoT Domain Model [BA11].

Architectural patterns are classified based on the concept of architectural

views. According to ISO/IEC 42010 [ISO11] architectural view is “work product
expressing the architecture of a system from the perspective of specific system con-

136 Software Engineering from Research and Practice Perspectives

cerns” where concern is “interest in a system relevant to one or more of its stakehold-
ers. A concern pertains to any influence on a system in its environment, including de-
velopmental, technological, business, operational, organizational, political, economic,
legal, regulatory, ecological and social influences”.

In this chapter the list of architectural views is based on [BA11] and is as
follows:

⎯ functional view
⎯ information view
⎯ deployment and operation view
⎯ evolution and interoperability perspective
⎯ performance and scalability perspective
⎯ trust, security and privacy perspective
⎯ availability and resilience perspective.

8.2 Architectural patterns in smart home application

8.2.1 Use case

Smart home represents idea of connecting objects in a household (lights, air-
conditioning, fridge, presence sensors, door/windows opening sensors etc.) in
order to improve comfort, decrease power consumption or automate some tasks.
Objectives of smart home are similar to home automation but IoT postulate self-
organizing of objects, seamless integration and high level of safety and security.

Smart home example scenario is following: a home is equipped with a set of
sensors: light, presence, temperature, door/window opened (in each room),
smoke and fire detectors, air quality sensor, electricity meters. There are also
actuators: light switches, heating, air conditioning switches assigned to individ-
ual rooms. All sensors and actuators operate in coordinated manner in order to
provide comfort to several residents. Measure of comfort is based on subjective
feeling so residents need to provide their feeling (e.g. feeling about temperature
or light level).

Another function of smart home infrastructure is monitoring state of the
home during absence of all residents and alert on dangerous situations (e.g. fire,
flood, burglary) as well as initiate rescue actions: like notify emergency ser-
vices, turn off electricity (in case of flood) or close gas valve (in case of fire).

IoT smart home infrastructure should also take power consumption into ac-
count and operate to minimize consumption without compromising residents’
comfort.

Architectural patterns applied in Internet of Things 137

Another important requirement is that residents need to monitor/change state

of home remotely (via smartphones or web access) but such access has to be
safe for security vulnerabilities - non-authorized persons should not be able to
access data or modify state.

8.2.2 Implicit invocation (event system) with publish-subscribe,
deployment and operation view

8.2.2.1 Context

In the implicit invocation pattern the invocation is not permitted explicitly
from calling component to called component, but indirectly through a special
mechanism such as publish-subscribe or message queuing or broadcast using
additional communicating component. The additional component decouples
communicating components. By using the implicit invocation pattern compo-
nents do not need to be aware of existence or details of other components. Mes-
sages that are exchanged between communicating parties are called events.

Figure 8.2. Implicit invocations with publish-subscribe mechanism. Publishers generate
events A and B type. Communication hub generates event of C type after receiving A and B type.

Subscribers S1, S2, S3 are subscribed on events A, B, C accordingly.

Publish-subscribe mechanism allows event consumers (subscribers) to regis-
ter for specific events and event producers to publish specific event that reaches
a specified set of consumers. Mediating element is called subscription manager.
Subscription manager is capable of generating new events on the basis of re-
ceived events (Figure 8.2).

138 Software Engineering from Research and Practice Perspectives

8.2.2.2 IoT Domain Model elements as pattern elements

Application of implicit invocation with publish-subscribe pattern in smart
home IoTis as follows. Subscription manager is placed on an element named
hub. Hub is a hardware and software element that is responsible for communica-
tion with all devices attached to all physical entities that establish IoT infra-
structure in smart home environment. Hub contains also subscription manager
that gathers events, sends events to subscribers and generates new events based
on received events. New events are generated according to rules that are stored
and processed in rule engine.

Event publishers are:
⎯ tags –identification of physical entity events;
⎯ sensors–change state of environment (temperature, light, door and win-

dow is opened or closed, a person enters or leaves room, electricity me-
ter etc.) events;

⎯ services invoked by user–human user feeling expression events (too
hot, too cold etc.) or request to modify rule of generating new events.

Event subscribers are:
⎯ actuators;
⎯ services on which are subscribed external users–interface to web appli-

cation that monitors state of home, alert services, emergency services
(police, fire brigade), commercial services (shops) .

Each event consists of following fields: type, name, list of parameters and its
values.

New devices that are attached to smart home environment communicate with
hub and negotiate automatically role (publisher/subscriber) and type of events
that they publish or subscribed to. In order to achieve such functionality there is
needed shared directory of events and some semantics of smart home environ-
ment (possibly expressed as some kind of ontology) – this aspect is out of scope
of the proposed architectural pattern.

During establishing communication between devices and hub there should
be provided mechanisms of authorization of devices, but this issue is also out of
the scope of pattern.

8.2.2.3 Pattern properties

Application of proposed pattern has significant advantages. The pattern ena-
bles simple (from user point of view) attaching new devices to smart home en-
vironment. User need only to authorize new device and rest of process of in-

Architectural patterns applied in Internet of Things 139

volvement of a device can be performed automatically. Devices do not have to
be aware of existence of other devices. Similarly removal of a device can be
done automatically.

However this pattern does not provide mechanisms of coordination devices
in order to fulfill goals of smart home environment. This functionality can be
provided by another pattern, described in the next section – rule-based system
pattern.

Implicit invocation with publish-subscribe mechanism also does not address
problems of self-organizing and security of smart home environment.

8.2.2.4 Analogies in non IoT application

Implicit invocation with publish-subscribe is widely applied in Enterprise
Application Integration-in case when many autonomic business applications
share information between them in order to support common business goals of
an organization.

8.2.3 Rule-based system – functional view

8.2.3.1 Context

A rule-based system pattern is a solution for solving complicated logical
problems. It consists of three elements: set of facts, set of rules and engine that
process them. Rules represent knowledge in form of a condition and associated
actions. Facts represent data. A rule-based system processes each rule that satis-
fies current condition (based on facts) and executes declared action. The action
of a rule might assert new facts, which in turn, triggers other rules.

A rule-base system is an easy and elegant way of expressing complicated
logic that is simple to create by a human user (but not always easy to analyze,
because of possible large set of simple rules). Rules can be also generated au-
tomatically.

8.2.3.2 IoT Domain Model elements as pattern elements

Application of rule-based system pattern is associated with using implicit in-
vocation with publish-subscribe pattern, described in previous section. Facts are
events generated by producers and by rule engine.

Rules condition can be any logical combination of event occurrence and
event parameter value. Rule action is generation of any event. Generated by rule
engine event is send to suitable subscriber. Rule engine is a subscriber of every
event.

140 Software Engineering from Research and Practice Perspectives

Set of rules is partitioned into two subsets:
⎯ hard rules –declared only by user or preconfigured, this subset covers

rules that defines important actions related with security and safety of
home

⎯ soft rules – can be declared by user but also can be generated automati-
cally on the basis of inference, soft rules defines actions concerning
comfort and energy saving.

Examples of hard rule:
1. condition: occurred event that represents locking door from outside

(all residents left house) and occurred event represents window open
action generate event “alert about opened window”

2. condition: occurred event “alert about opened window” and oc-
curred event that represents presence of person in house (possible
burglary)
action: generate event “alert about possible burglary”

On event “alert about possible burglary” should be subscribed sound alarm
actuator and service submitting alert to police or security guard.

Examples of soft rules:
1. condition: occurred event temperature changed in a room below

20°C and occurred event that represents a resident of the room feel
too cold
action: generate event “turn on heating”

2. condition: occurred event a person entered the room and occurred
event from light sensor represents change of illumination to dark ac-
tion: generate event “turn on lights in the room”

In case of soft rule no 1 inference engine can gather facts about optimal tem-
perature (optimal in function of residents feeling) and generate rules that will
generate events in order to provide comfort. For example turn on heating when
temperature decreases below 20°C and turn of when temperature reaches 23°C.

8.2.3.3 Pattern properties

Rule engine performs coordination of devices that conform smart home envi-
ronment.

Possibility of inference of new rules realizes self-organizing of devices re-
quirement. However this functionality demands utilizing inference engine com-
ponent with artificial intelligence algorithms.

Architectural patterns applied in Internet of Things 141

8.2.3.4 Analogies in non IoT application

Rule-based systems pattern is widely used in expert systems that provides
knowledge of an expert or as set of constrains. In case of IoT such experts are
home residents that have knowledge about operations of home. Facts can be
expressed implicit and put down in a list of rules (hard rules) or gathered during
operation of IoT system (soft rules).

8.3 Architectural patterns in healthcare application

8.3.1 Use case

The consequence of the constant population aging is an increasing number
of people who require continuous monitoring and medical care. Simultaneously,
the possibilities of diagnosis, rehabilitation and pharmaceutical treatment are
constantly growing [DA13]. As a result, there are more and more people who
are able to live normally despite their diseases. However, they are a group of
high-risk - often requiring continuous surveillance - so they are not entirely
independent. Healthcare Application, based on the concept of Internet of
Things, suggested in [AZ05], could help doctors and other responsible individu-
als in taking care of patients.

The basic functionality of the application would be to remind the patients
to take the medications and to control their absorption. There is a possibility
of periodical verification of significant parameters (such as blood pressure or
temperature) and also permanent control of vital signs. In case of minor defi-
ciencies noticed, the responsible individual would be informed, in case of large
irregularities - alarm would be generated and medical help would be called.

Medical centers and hospitals could accumulate the information from the
application, which will significantly facilitate the work of doctors. Basing on
real data collected at specific time intervals, they could better assess the pro-
gression or regression of the disease. On this basis it will be easier to make de-
cisions about treatment - for example, the need to increase medication dosages.
Additional advantage of such solution would be the ability to access data of the
patient from other medical centers - if the patient was in another hospital,
information about the disease, blood group, allergies, etc. would be acquired
instantly.

In this conception it is necessary to use a set of sensors for medical and re-
habilitation equipment. The patient should be provided with a unique tag, which

142 Software Engineering from Research and Practice Perspectives

identifies him and defines his location. All medicines should be also labeled
with tags.

Another essential element is the IoT-enabled smartphone or tablet that pa-
tient carries with him, possessing functions such as generating reminders, con-
tacting the responsible individual and calling for medical help.

It is also necessary to communicate with other available IoT systems: for ex-
ample, in case of overlooking the reminder to take medications, the application
could locate patient position and get his attention by pulsed pulsating light (us-
ing solutions applied in smart home). In another case, after connecting the ap-
plication to the sensors on the outside, it could inform the patient with an aller-
gy about high concentration of pollen and suggest an additional dose of anti-
allergic, concurrently controlling if the maximum dose is not exceeded.

A particularly important issue of IoT in medical applications is security. Pa-
tient’s data on his or her condition are sensitive information that should be a
subject of special protection. It is of great challenge to concurrently protect the
data and share specific parts of the information.

In addition, the application should have a much greater reliability than other
IoT applications - it is not difficult to imagine a situation, in which the patient
relies on a system that reminds to take medication and this technique fails.

8.3.2 Layered pattern - trust, security and privacy perspective

8.3.2.1 Context

Three-tier architecture is a commonly used pattern in which the communica-
tion, functional process logic, computer data storage and data access are devel-
oped and maintained as independent modules, most often on separate platforms
[EC95]. This solution provides the commonality of resources and ensures avail-
ability and efficiency of operations. That type of architecture allows inde-
pendently updating or replacing modules. In addition, lower and upper layers
can be easily designed and implemented using well-known technology (for ex-
ample, the data storage layer - as databases). The advantage of this solution
is also an increase of data security, which are available on the customer request
only after passing through an intermediate layer - top and bottom layer cannot
communicate directly with each other. A common problem related to this pat-
tern is the complexity of data processing layer - it requires large hardware and
computational resources.

Architectural patterns applied in Internet of Things 143

8.3.2.2 IoT Domain Model elements as pattern elements

The communication layer includes modules that are responsible for commu-
nication with the human users and the physical things (called physical entities) -
actuators and sensors. The communication with physical entities can be devel-
oped using specific sensor devices, to identify the tags that are used to identify
physical entities.

8.3.2.3 Pattern properties

Three-tier architecture seems to be appropriate in perspective of security and
privacy of the information in IoT applications related to medicine. Data access
is strictly controlled by the intermediate layer, which may apply authorization,
authentication and identification mechanisms.

For human users, identification can be performed using special tagged cards
(different for patients, doctors, medical assistance), authorization can be per-
formed using passwords entered by the interface. After these processes, inter-
mediate layer would control whether users have the appropriate permissions to
the data: medical assistance – only contact details and information on diseases,
doctors - information on recent research results, treatment history, etc.

In the case of physical objects, communication may be restricted – it is not
allowed to share personal data and other information, which would allow identi-
fication of the patient. Only objects which are closely associated with the pa-
tient could modify the data - for example pressure readings could only be saved
by a pressure gauge equipped with sensor, marked by a unique tag, which
would be verified in the intermediate layer.

Communication with unknown sensors could be done while maintaining pri-
vacy - for example after detecting sensor for measuring the concentration of
pollen in the air, application reads data about the patient’s allergens, and the
intermediate layer adds a dozen random allergens - this way information about a
specific allergies would be sent undercover.

8.3.3 Broker - evolution and interoperability perspective

8.3.3.1 Context

Architecture for a system that consists of multiple remote objects which in-
teract synchronously or asynchronously and have heterogeneous environment.
Need for an easy attachment of new components, which architecture is un-
known in this moment and standardize their communications.

144 Software Engineering from Research and Practice Perspectives

8.3.3.2 IoT Domain Model elements as pattern elements

Systems of virtual entities - software representation of devices (actuators,
tags and sensors) - able to communicate with the broker.

8.3.3.3 Pattern properties

A broker is a tool that separates the communication functionality of a dis-
tributed system from its application functionality. It hides and mediates total
communication between the objects or components of a system. The broker is
composed of a client-side requestor to construct and forward invocations and a
server-side invoker that is responsible for invoking the operations of the target
remote object. A marshaller on each side of the communication path handles the
transformation of requests and replies from programming-language native data
types into a byte array that can be sent over the transmission medium [BA13].

The advantage of the broker, in context of evolution and interoperability of
IoT systems, is the easiness of adding new components, even if the architecture
is not known. Construction of an application that lists the messages with the
environment in a standardized way, allows to exchange the information between
systems with potentially very different functionalities, if only subsystems adjust
their messages to the broker’s standard.

In view of the specific use in medicine, it is easy to imagine a situation, in
which solutions used in healthcare applications should be able to communicate
with systems in smart home. For example, if sensors used in the smart home
want to know the location of the user, they will send a simple query, which is
then processed by the broker and sent to healthcare applications in understanda-
ble language. The answer is also processed in a way that its result will be under-
stood by the system of smart home.

8.3.4 Redundancy - availability and resilience perspective

8.3.4.1 Context

Systems, in which selected component functionality must be characterized
by great reliability. Any type of failure cannot affect fundamental functions of
the system, which should continue executing its tasks.

8.3.4.2 IoT Domain Model elements as pattern elements

One of the redundant elements should be components, which analyze the
readings from physical entities.

Architectural patterns applied in Internet of Things 145

8.3.4.3 Pattern properties

Redundancy is the duplication of critical components of a system with the
intention of increasing reliability of the system, usually in the form of a backup
or fail-safe [JF76].

The use of redundancy in IoT systems can be understood in two ways. First
of them is to duplicate devices responsible for the critical functions of the sys-
tem - notification of taking medication or calling assistance. In this case, the
smartphone of the responsible individual should have the same functions as the
smartphone of the patient.

Second way is to duplicate some parts of the control system. Common solu-
tion is to triplicate that parts. A defect of one component may then be out-voted
by the other two. Simple example of the usefulness of such solution may be
duplicating the part responsible for calling emergency - ambulance will be
called only when at least two of the three subsystems recognize it as necessary.
This will allow an unnecessary call for help to be avoided, which otherwise
would be performed in case of failure of a single system.

8.4 Architectural patterns in retail application

8.4.1 Use case

In order to decide if architectural pattern is useful, it needs to be considered
on some example. Therefore it was decided to use business case from [BA13]
which adhere to logistics, production and sales areas. Key to success for emerg-
ing IoT systems is their added value for business. This example very clearly
shows potential benefits for companies who will implement this IoT system.
Two basic benefits of technology presented in those examples will be reducing
damage of the cargo and increasing sales of goods by targeting and profiling
each individual customer.

Previously mentioned IoT system spreads at every level of food supply
chain. Systems in this business area are extremely complex and distributed, but
they are mostly not connected. Basically, making normal, existing systems to be
IoT system is about adding sensors at all layers of production and sales (for
example at plantation and in market) and connecting all those systems in one
organism.

146 Software Engineering from Research and Practice Perspectives

Example IoT system consists of following levels:
⎯ Production – all plants have sensors and RFID readers/tags attached to

them. They are generating data about every important factor of envi-
ronment – humidity, temperature, insulation etc.

⎯ Transportation – each transported product has a sensor. They report data
about every event on 24/7 basis. For instance, they can collect data from
accelerometer to report if there were any accident during road. Another
example could be temperature data that can be crucial in flower trans-
portation. Reaching critical intensity of heat level may lead to death of
all living cargo.

⎯ Sales – after the goods are delivered to the market they can have new
tags/sensors attached for producing data e.g. about their condition or
expiration date. That information are beneficial in management of
wares in shop. Additionally, customers can have application on their
mobile phones that provides information about availability and position
of some wares. Based on data delivered by sensors, profiling service is
able to analyze behavior and history of customer’s purchases and to
present specially tailored discounts.

Thanks to connecting all those parts of system customer can get insight on
how the concerned product was transported, in what conditions and what is its
origin. Coupling those systems, allowing them to communicate and process data
is “making them IoT” and providing vast amount of possible functionalities as
well as benefits.

8.4.2 Layers pattern - Functional View

8.4.2.1 Context

This pattern becomes useful in a situation when high-level components need
to communicate with lower-level components in order to achieve some goal.
Then decoupling those components into different, horizontal layers is benefi-
cial. Each layer has its own interface to allow explicit and loosely coupled
communication between each other. In the pure form of the pattern, layers
should not be by-passed. Higher-level layers access those in lower-level only
through the layer between. It creates a simple and understandable separation.
This division helps to maintain modifiability, portability and reusability. This
pattern will be most probably used in composition with other ones.

Architectural patterns applied in Internet of Things 147

8.4.2.2 IoT Domain Model elements as pattern elements

Figure 8.3 presents layered pattern in production level of exemplary system.
Layered pattern is applied for the whole system. The top-down layer represents
things from physical world, called physical entities. They can be, e.g., flowers.
Next layer consists of devices that are gathering data about those physical enti-
ties. In the highest layer are virtual entities - software representations of devices
in IoT system.

Figure 8.3. Layers pattern in IoT example.

8.4.2.3 Pattern properties

This pattern seems to be natural in IoT. Due to complexity of the domain a
clear separation of elements in system will be helpful in giving plain, not over-
complicated architecture. Another benefit that can be acquired from using this
kind of approach would be easier way to extend any of the layers. Currently,
exists some vision of IoT systems, but this particular one can differ or evolve in

148 Software Engineering from Research and Practice Perspectives

future due to e.g. emerging new technology. If, for example, new kinds of sen-
sors will appear, then in layered system it would be just a matter of modernizing
this one and adjacent layers. First of disadvantages is that data from devices can
be acquired only through adequate layer. They should not be by-passed. Anoth-
er drawback is that any additional layer which needs its own communication
interface has impact on efficiency.

8.4.3 Shared repository / Active repository pattern - Information View

8.4.3.1 Context

Another pattern that can be used in given example is shared repository. In
this architecture one component of the system is used as a central data store,
accessed by all other independent components. It is effective way of sharing big
amount of data.

“A shared repository, where all of its clients are independent components, can be con-
sidered as client-server, with the data store playing the server part”[AZ05].

Active repository is a variant of this pattern in which clients can be informed
about specific events in the shared repository such as changes or access of data.
Active repository has a list of subscribers and maintains appropriate communi-
cation with them.

8.4.3.2 IoT Domain Model elements as pattern elements

Shared repository store data from virtual entities that are software represen-
tation of devices - actuators, tags and sensors.

8.4.3.3 Pattern properties

Concerned business case is data-centered. Systems in this example are con-
stantly gathering and processing data. Appropriate place for storing data is cen-
tral repository. Later those information can be processed by higher level analyze
systems. Stated example needs to have at least three systems – one used in plan-
tation site, another during transportation and last one for sales. To achieve the
most benefits and to fulfill idea of IoT, those systems need to communicate with
each other. For example, a customer in store wants to check information about
potential purchase of flower. She wants to know whether it was ecologically
grown, what is its origin and in what conditions it was transported. All those
data needs to be gathered from other systems. Those systems collecting data - at

Architectural patterns applied in Internet of Things 149

production facility, during transportation and in shop can use shared repository
architecture. In case of transportation, when alarm functionality is needed, an
active repository informing alarm service can be introduced. In holistic architec-
ture of system, data from those shared repositories will be collected, analyzed
and used in higher layer what is described in next section.

8.4.4 Enterprise service bus with publish-subscribe - deployment and oper-
ation view, evolution and interoperability perspective

8.4.4.1 Context

Enterprise service bus is an additional mediating layer which connects and
coordinates exchange of communicates, web services, XML, transformations
and data management. It allows usage of service oriented architecture concepts.
Its primary use is in enterprise application integration of heterogeneous and
complex applications.

8.4.4.2 IoT Domain Model elements as pattern elements

The primary use of enterprise service bus in IoT system will be connecting
and allowing communication between active digital artifacts, services and re-
sources.

8.4.4.3 Pattern properties

Enterprise service bus (ESB) brings many benefits. The biggest one is stand-
ardized communication that permits many heterogeneous systems to cooperate
efficiently. The second is that it allows simple extending of system functionali-
ties. IoT grants a huge amount of possible uses, where many of them still ha-
ven’t emerged. It is possible to imagine some of them right now, but when the
technology will be established widely, many new will flourish. In such situation
adding new functionalities to system will be a crucial aspect. That will be satis-
fied by use of ESB.

The point of IoT is to connect many systems into one. Thus all parts of given
example - production, transportation and sales - should be linked. Those parts as
described in previous section, can be shared repositories. They are smaller sys-
tems that gather data. In stated exemplary organization there is need for “higher
layer” system that will connect those repositories, and give “IoT added value”.
Usage of ESB enables integration of those systems. The amount of different
services cooperating only in sales layer is huge as well. For example, customer
profiling service, food expiration service, wares availability service and many

150 Software Engineering from Research and Practice Perspectives

others. They all need to have a standardized way to cooperate that ESB provides
them. In addition, it can be easily imagined that the company is buying another
already existing production facility and want to include it in IoT ecosystem.
Then if system is fairly extendable, the integration should be smooth and cheap.

Publish-subscribe is useful in e.g. situations when an alarming service is
needed. It subscribes for data from signals and if some critical values are ex-
ceeded it raises an alarm.

8.4.4.4 Analogies in non IoT application

Every IT system brings challenges to its architecture. Each have its own spe-
cific character which can vary depending on type and general purpose. But in all
IoT systems main challenges seems to be similar. One of them is scalability,
which manifest itself in unknown amount of devices during architecting phase.
Also their character is different - they can be heterogeneous. Next challenge is
being extendable. Integration of new systems and adding new functionalities
should be simple. Those requirements need to be fulfilled and it is possible by
using ESB.

8.5 Conclusion

The chapter revised well-established architectural patterns and their applica-
bility in the IoT domain. Important properties of architectures IoT systems
where discussed in three different application fields of IoT: smart home,
healthcare and retail. Each of application fields has different architectural driv-
ers and should be addressed by appropriate patterns with respect to different
architectural views.

Despite the fact that there is not much experience in designing large-scale,
IoT domain designers and architects should follow good practices and patterns
from IT architecture experience.

References

[AZ05] Paris Avgeriou and Uwe Zdun Architectural Patterns Revisited - A Pattern Language, In
10th European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee,
2005

[BA11] Alessandro Bassi et al. Final Architectural Reference Model for the IoT v3.0 (IoT-A),
www.iot-a.eu, 2011

[BA13] Alessandro Bassi et al. Enabling Things to Talk, Designing IoT Solutions with the IoT
Architectural Reference Model, SpringerOpen, 2013

Architectural patterns applied in Internet of Things 151

[BU96] Frank Bushman et.al. Pattern-Oriented Software Architecture, John Wiley & Sons, Inc.,

1996
[DA13] Timothy M. Dall et al. An aging population and growing disease burden will require a

large and specialized health care workforce by 2025, Health Affairs, 32, no 11, Novem-
ber 2013

[EC95] Wayne W. Eckerson, Three Tier Client/Server Architecture: Achieving Scalability,
Performance, and Efficiency in Client Server Applications.Open Information Systems,
January 1995

[GU13] Jayavardhana Gubbi et al., Internet of Things: Vision, applications and research chal-
lenges, Future Generation Computer Systems 29 1645–1660, 2013

[HA10] Stephan Haller, The Things in the Internet of Things, Proceedings of Internet of Things
Conference 2010

[ISO11] ISO/IEC/IEEE 42010:2011 Systems and software engineering — Architecture Descrip-
tion, Iso.org.,2011

[SP09] Patric Spiess et al. SOA-based Integration of the Internet of Things in Enterprise Ser-
vice, IEEE International Conference on Web Services, ICWS, 2009

[SS08] Gérald Santucci and Sebastian Lange Internet of things in 2020 a Roadmap for the
Future, joint EU-EPoSS workshop report, 2008

[TH11] Teixeira Thiago et al., Service Oriented Middleware for the Internet of Things: A Per-
spective, Service Wave 2011, LNCS 6994, pp. 220–229, 2011

[WA76] J. F. Wakerly, Microcomputer Reliability Improvement Using Triple Modular Redun-
dancy, Proceedings of the IEEE, VOL.64, No.6, June 1976

Chapter 9

DCI implementation in C++ and JAVA
– case study

The DCI architectural pattern for software, introduced by Reenskaug, contains three parts: Data,
Context and Interaction. Data represent domain knowledge while Context and Interaction repre-
sent the business logic by implementing communication between objects. Context dynamically
injects roles into objects. In strongly dynamic languages like Ruby, the DCI architecture can be
easily implemented, in others, like C++ or Java, there are some implementations problems. The
goal of this chapter is to present how the DCI architecture can be efficiently implemented in C++
and Java. We briefly describe the DCI pattern and give an exemplary use case implemented in
C++ and Java with some explanations.

A design pattern is a general, reusable solution to a commonly occurring
problem within a given context in the design of software. It gives a description
or a template for how to solve a problem that can be used in many different
situations. Patterns are formalized best practices that the programmer must im-
plement in the application [AI97]. They originated as an architectural concept
by Christopher Alexander (1977/79) and gained popularity in computer science
after the book Design Patterns: Elements of Reusable Object-Oriented Software
which was published in 1994 by the so-called "Gang of Four" [GH95]. Object-
oriented design patterns typically show relationships and interactions between
classes or objects, without specifying the final application artifacts that are in-
volved. Design patterns reside in the domain of modules and interconnections.
At a higher level there are architectural patterns that are larger in scope, usually
describing an overall pattern followed by an entire system [GH 95, ST07].

The DCI architectural pattern, introduced by Reenskaug in 2008 [Re08,
DC12, DC14], is composed of three parts: Data, Context and Interaction. Data
represent the domain knowledge while Context and Interaction represent the
business logic by implementing communication between objects. The DCI ap-
proach can be used to design lean architecture [CB10] by separating “what-the-
system-does” (rapidly changing business-logic features) from “what-the-
system-is” (long term domain knowledge). Data represents domain knowledge,
Context binds roles to an object; and Interaction represents business logic by
implementing communication between roles.

Since its inception in 2008, the DCI approach has spread in many languages,
such as Ruby, Python, C++, C#, Java and many more. In strongly dynamic lan-
guages like Ruby or Python, a context can dynamically inject roles into an ob-

154 Software Engineering from Research and Practice Perspectives

ject. The implementation of DCI in these languages is easy and natural. In
[BS13, BS14] we gave examples of Ruby code implementing two different use
cases, taken from an application which we purposely designed and implemented
[ST13] in DCI architecture using Ruby [Ruby] as the implementation language.
In literature there is a lack of complete examples showing how to use or imple-
ment DCI, only small snippets are published (e.g. in [QZ13]), also simple ex-
amples can be found in blogs on DCI e.g. [Mahl], [Ober], [Pars] .

In this chapter we present some implementation problems of DCI in C++
and Java. We illustrate the solutions of these problems through a complete ex-
ample, different than examples we have presented in [BS13, BS14]. Our contri-
bution is also the explanation how to use and implement the DCI pattern in C++
and Java.

9.1 DCI

While classical object oriented design is mainly focused on classes and ob-
jects, the DCI paradigm imposes the view of a system in terms of data, context
and interactions [Re08, CR12, Co12, C12a, Re12, Re13, BS13, RC14]. The
structure of the system is captured in classes which create objects at the runtime.
Classes are tied together by data references and by method invocations that run
along those data references. The context refines these relationships on a per-use-
case basis with connections that bind together objects in a use case according to
their dynamic roles. The context encapsulates the roles that define system be-
havior and also the bindings between objects and theirs roles. Such view of the
system can be easily adapted during design and implementation phases of a new
system.

DCI provides a model that allows creating a new set of program structures
for each new use case. In DCI classes, are reduced to manage the way the com-
puter represents information in storage. Each use case is implemented in another
programming construct called a context which encapsulates behavior defined in
a use case scenario. Context also encapsulates the knowledge of how to choose
objects and bind their roles to set up dynamic per-use-case relationships. For
each use case, appropriate context changes the program structure to create a
network of objects cooperating in this use case. The system has a new dynamic
architecture for the execution of each use case.

The static aspects in the end user mental model — such as the use case itself
— remains static in the DCI code. The DCI model separates the behavioral part
from the data structure. The run-time modules are created dynamically accord-
ing to business needs.

DCI implementation in C++ and JAVA – case study 155

9.2 Examples of DCI

Some widely used programming languages do not fully support DCI para-
digm because the dynamic “injection of roles” into object is not allowed in e.g.
C++ and Java. Despite this fact, it is also possible to implement DCI based sys-
tems in these languages; the examples are given in following sections. We im-
plemented a use case representing an auction. In the presented use case two
persons are taking part: a seller and a buyer (bidder). The role of the buyer is to
bid, while the roles of the seller are accept or reject the offer. The use cases for
the seller and the buyer are shown in Figure 9.1 and Figure 9.2 accordingly.

Figure 9.1. Auction - use cases of a seller.

Figure 9.2. Auction - use case of a buyer.

9.2.1 Implementation in C++

Unlike some of the dynamic languages such as Ruby or Python, in C++ ob-
jects have to be bound to their roles in the class declaration. In Figure 9.3 the
implementation of a use case representing an auction is presented. Roles' identi-

156 Software Engineering from Research and Practice Perspectives

fiers are implemented as abstract C++ classes with their role methods defined as
purely virtual, which prevents them from standalone initialization (lines 1-10).
They are defined to provide interface for roles and should not implement any
logic. Two template classes: Seller and Bidder are concrete role implemen-
tations. The AuctionContext class represents auction use case. It bounds
roles to their actor objects (lines 72 - 77) and is responsible for the use case
enactment. The crucial part of DCI – interaction is defined inside the execute
method, which triggers the use case execution (lines 84-87).

In C++ implementation of DCI, class has to be injected all roles which can
be assigned to any of its instances during the runtime. This results in all role
methods being available outside the context, thus violating one of DCI princi-
ples. Moreover, it is not possible to call an actor object's method using the role
identifier. To address this issue, casting can be used, examples are presented in
lines 18, 27, 32 in Figure 9.3.

1 class BidderRole {
2 public:
3 virtual void bid(Offer offer, Amount amount) = 0;
4 };
5
6 class SellerRole {
7 public:
8 virtual void accept_offer(Offer offer) = 0;
9 virtual void decline_offer(Offer offer) = 0;
10 };
11
12 #define SELF static_cast<ConcreteDerived ->(this)
13
14 template <class ConcreteDerived>
15 class Bidder : public BidderRole {
16 public:
17 void bid(Offer offer, Amount amount) {
18 SELF ->name();
19 cout << "bidding...";
20 }
21 };
22
23 template <class ConcreteDerived>
24 class Seller : public SellerRole {
25 public:
26 void accept_offer(Offer offer) {
27 SELF ->name();

DCI implementation in C++ and JAVA – case study 157

28 cout << "accepting...";
29 }
30 void decline_offer(Offer offer) {
31 SELF->name();
32 cout << "declining...";
33 }
34 };
35
36
37 class User : public Seller<User>, public Bidder<User> {
38 public:
39 User(){}
40 User(string name) {
41 name_ = name;
42 }
43 void set_name(string name) {
44 name_ = name;
45 }
46 void name() {
47 cout << name_;
48 }
49 private:
50 string name_;
51 };
52
53 class Context {
54 public:
55 Context() {
56 parent_ = current_;
57 current_ = this;
58 }
59 virtual ~Context() {
60 current_ = parent_;
61 }
62 public:
63 static Context *current_;
64 private:
65 Context *parent_;
66 };
67
68 Context *Context::current_ = NULL;
69
70 class AuctionContext : public Context{
71 public:

158 Software Engineering from Research and Practice Perspectives

72 AuctionContext(BidderRole* bidder, SellerRole* seller, Offer
offer,
73 Amount amount_) {
74 bidder_ = bidder;
75 seller_ = seller;
76 offer_ = offer;
77 }
78 BidderRole* bidder() const {
79 return bidder_;
80 }
81 SellerRole* seller() const {
82 return seller_;
83 }
84 void execute() {
85 bidder()->bid(offer_, amount_);
86 seller()->accept_offer(offer_);
87 }
88 private:
89 BidderRole* bidder_;
90 SellerRole* seller_;
91 Offer offer_;
92 Amount amount_;
93 };
94
95
96 User* bidder = new User;
97 bidder->set_name("Bidder");
98 User* seller = new User;
99 seller->set_name("Seller");
100 Offer offer; Amount amount;
101
102 AuctionContext *context = new AuctionContext(bidder, seller,
offer, amount);
103 context->execute();

Figure 9.3. Auction use case implemented in C++.

Other examples of DCI implemented in C++ can be found in [Pars].

9.2.2 Implementation in Java

Java does not allow to dynamically inject code nor does it support multiple
inheritance. These features make the DCI implementation in Java difficult.
Rickard Öberg and Niclas Hedhman proposed a special tool Qi4j [Qi4j] ena-

DCI implementation in C++ and JAVA – case study 159

bling efficient implementation of DCI in Java using the annotation mechanism.
In Figure 9.4 the complete code with the calls of Qi4j library is shown. The
code implements the same use case as in Section 9.2.1, i.e., a use case represent-
ing an auction.

Both Seller and Buyer roles are implemented as Java interfaces refined
with Qi4j Mixins annotations (lines 24-25 and 41-42 in Figure 9.4). Each role
interface is provided with a default implementation inside the Mixin class.
Mixin classes define the behaviour specific for a role and hold references to
the actor objects (lines 29-38, 47-61). The Auctioncontext is a standard
Java class, as shown in lines 1 – 22. Context binds roles to their objects upon its
creation (lines 9 – 17) and provides one public method execute, which is
responsible for the interaction between roles.

However the Qi4j library facilitates the implementation of DCI in Java the
programmer has to adjust to the requirements imposed by it. The programmer
should use the offered by Qi4j skeleton and the dedicated library to access the
data. Also the way of running programs is special. In order to run the applica-
tion, one should use the Qi4j assembler classes, which create Qi4j runtime
instance as shown in the lines 64 – 77 in Figure 9.4.

1 public class AuctionContext
2 {
3 public Bidder bidder;
4 public Seller seller;
5
6 private Offer offer;
7 private BigDecimal amount;
8
9 public AuctionContext(User bidder,
10 User seller,
11 Offer offer,
12 BigDecimal amount) {
13 this.bidder = (Bidder) bidder;
14 his.seller = (Seller) seller;
15 this.offer = offer;
16 this.amount = amount;
17 }
18
19 public void execute() {
20 bidder.bid(offer, amount);
21 seller.acceptOffer(offer);
22 }

160 Software Engineering from Research and Practice Perspectives

23
24 @Mixins(Bidder.Mixin.class)
25 public interface Bidder{
26
27 public void bid(Offer offer, BigDecimal amount);
28
29 class Mixin implements Bidder {
30
31 @This
32 User user;
33
34 public void bid(Offer offer, BigDecimal amount)
35 {
36 System.out.println("bidding...");
37 }
38 }
39 }
40
41 @Mixins(Seller.Mixin.class)
42 public interface Seller{
43
44 public void acceptOffer(Offer offer);
45 public void declineOffer(Offer offer);
46
47. class Mixin implements Seller {
48
49 @This
50 User user;
51
52 public void acceptOffer(Offer offer)
53 {
54 System.out.println("accepting...");
55 }
56
57 public void declineOffer(Offer offer)
58 {
59 System.out.println("declining...");
60 }
61 }
62 }
63 }
64 SingletonAssembler assembler = new SingletonAssembler()
65 {
66 public void assemble(ModuleAssembly module)

DCI implementation in C++ and JAVA – case study 161

67 throws AssemblyException
68 {
69 module.entities(UserRolemap.class);
70
71 module.services(
72 MemoryEntityStoreService.class,
73 UuidIdentityGeneratorService.class);
74 }
75 };
76 UnitOfWork uow = assembler.module().newUnitOfWork(
77 UsecaseBuilder.newUsecase("Auction Context"));
78
79 try {
80 User bidder = uow.newEntity(User.class);
81 User seller = uow.newEntity(User.class);
82
83 Offer offer = new Offer();
84
85 AuctionContext context = new AuctionContext(bidder,
86 seller, offer, new BigDecimal(20));
87
88 context.execute();
89
90 } finally {
91 uow.discard();
92 }
93 }

Figure 9.4. Auction use case implemented in Java.

Some problems of DCI implementations with Qi4j are also discussed in R.
Oberg’ blog [Ober].

9.3 Conclusion

In this chapter we presented a case study on how to implement DCI pattern
in C++ and in Java languages. The problems with implementation of DCI para-
digm in some programming languages were also noticed by Trygve Reenskaug
(the “father” of DCI) and a group of people involved in DCI. They tried to in-
troduce new programming language, called Marvin [Marv]. The syntax of
Marvin is based on C# and it fully supports specific for DCI constructs like
roles, contexts and dynamic injection of roles into objects. So far we were not
able to find any reports about the usage of this language.

162 Software Engineering from Research and Practice Perspectives

DCI is closer to the original goals of the object paradigm in its basis in

stakeholder mental models and end user concerns than the regular class-oriented
programming. It also preserves the main properties of object-oriented program-
ming i.e.: encapsulation, identity and reflection of human mental models. DCI
based systems are very flexible, much more than the traditional ones this is
grace to the fact that static (Data) and dynamic (Context, Interaction) part of a
system are separated. As each use case is associated with a context it is easy to
add new functionalities (use cases) to existing system.

DCI is strictly tied to the system architecture so it seems to us, that it would
be very difficult to use it in legacy systems, especially if these systems were
designed without the DCI paradigm.

DCI is currently also the subject of several blogs e.g. [Mahl], [Pars], [Ober].

Acknowledgments

We are very grateful to the reviewers for valuable remarks and hints.

References

[AI97] C. Alexander, S. Ishikawa and M. Silverstein. A Pattern Language, New York,

Oxford University Press, 1977.
[BS13] I. Bluemke and A. Stepień. DCI pattern. Software Engineering – selected problems,

Z. Szyjewski, J. Swacha (ed.), Polskie Towarzystwo Informatyczne, ISBN 978-83-
7518-598-0, (in polish), 29-39, 2013.

[BS14] I. Bluemke and A. Stepień. Experiences with DCI pattern, submitted to ASC 2014
conference, 2014.

[CB10] J.O. Coplien and G. Bjørnvig. Lean Architecture for Agile Software Development,
Wiley, 2010.

[Co12] J.O. Coplien. Reflections on Reflection, SPLASH’12, October 19–26, Tucson, Ari-
zona, USA. ACM 978-1-4503-1563-0/12/10, 7-9, 2012.

[CR12] J.O. Coplien and T. Reenskaug. The Data, Context and Interaction Paradigm,
SPLASH’12, October 19–26, Tucson, Arizona, USA., ACM 978-1-4503-1563-
0/12/10, 227, 2012.

[C12a] J.O. Coplien. Objects of the People, By the People, and For the People, AOSD’12,
March 25–30, Potsdam, Germany, ACM 978-1-4503-1092-5/12/03, 3-4, 2012.

[DC12] T. Reenskaug and J.O. Coplien. The DCI Architecture: A New Vision of Object-
Oriented Programming. [online] http://www.artima.com/articles/dci_vision.html,
access 2012.

[DC14] DCI – Data Context Interaction. http://fulloo.info/ , [online] access 2014.
[GH95] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of

Reusable Software, Reading, Mass., Addison-Wesley, 1995.

DCI implementation in C++ and JAVA – case study 163

[Mahl] P. Mahlen, blog: DCI Architecture – Good, not Great, or Both, [online]

http://pettermahlen.com/2010/09/10/dci-architecture-good-not-great-or-both/
[Marv] Marvin. http://fulloo.info/Examples/Marvin/Introduction/ , access 2013.
[Ober] R. Oberg, blog, [online], http://java.dzone.com/articles/implementing-dci-qi4j
[Pars] Ch. Parson, blog, [online], A fresh take on DCI with C++ (with example),

http://chrismdp.com/2012/04/a-fresh-take-on-dci-with-c-plus-plus/
[Qi4j] http://qi4j.org/ , access 2012.
[QZ13] Ch. Qing and Y. Zhong. A Seamless Software Development Approach Using DCI,

IEEE 78-1-4673-2008-5/12/, 139- 142, 2012.
[RC14] T. Reenskaug and J.O. Coplien. DCI as a New Foundation for Computer Program-

ming, Programming [online],
http://fulloo.info/Documents/CommSense, draft.1.7.pdf, 2014.

[Re08] T. Reenskaug. The Common Sense of Object Orientated Programming, [online],
http://folk.uio.no/trygver/2008/commonsense.pdf , Sept. 11, 2008.

[Re12] T. Reenskaug. A DCI Execution Model, [online],
http://fulloo.info/Documents/DCIExecutionModel-2.1.pdf , v 2.1, 2012.

[Ruby] http://www.ruby-lang.org/ , access 2013.
[ST07] A. Shalloway and J.R. Trott. Design Patterns Explained: A New Perspective on

Object-Oriented Design (2nd Edition), Addison-Wesley, 2007.

PART IV
SOFTWARE QUALITY

Chapter 10

E2A – An Extensible Evolution
Analyzer for Software Repositories

Software systems instantly evolve, which is frequently connected with degradation of the code
quality. As a consequence, maintenance becomes the essential phase of the software lifecycle.
Software repositories record the history of changes in source code that helps to understand the
processes of software evolution and propose new methods to effectively manage them. In this
chapter we present an extensible software tool for analyzing source code repositories. It allows
for defining and collecting metrics, and visualizing their evolution.

Maintenance becomes one of the crucial phases in software lifecycle. Mod-
ern systems spend most of their lives being fixed, improved or adjusted. Ac-
cording to the Lehman's laws [Leh96], every software system has to undergo
constant adjustment of the code internal structure, or it eventually becomes un-
modifiable and unusable. Such a process requires continuous monitoring of
parameters vital to the code quality: size, complexity, abstractness etc. In some
cases code metrics (like [CK94], [Abr95]) offer a sufficient solution for that, in
other – more complex methods and models (like code smells) are required.
However, we still need deeper understanding of how the evolution processes
impact the metrics and now they can be controlled by refactoring. In all these
cases there is a need for specialized, extensible tools that would help developers
and in observing and effectively preventing the decay processes in code.

In this chapter we present E2A – a tool that collects data from SVC reposito-
ries, conducts analyses on this data and presents their results. Its primary appli-
cation is observing the software evolution, but it can be also used in software
development to analyze trends in quality of the source code. The unique feature
of E2A is an API for defining and injecting metrics calculators, which allows
users for defining new measures or adjusting the existing ones to their needs.
Originally, E2A was designed and developed for Subversion (SVN) reposito-
ries. Although numerous recent projects prefer distributed version-control sys-
tems (like Git), other long-developed projects still use SVN, which encouraged
us to focus on the latter system. However, the layered architecture of the tool
allows for accommodating and adapting other version control systems as well.

168 Software Engineering from Research and Practice Perspectives

10.1 Measuring quality of the source code

Code metrics are functions that map a selected feature of the source code to
an ordinal scale. However, in order to effectively exploit the information they
provide, we need to know the objective context of the measurement, and be able
to interpret the results.

The simplest method of introducing the context is comparison with other
systems, both in terms of particular values and the trends.. The turning points of
a metric values (like its suprema or changes in monotonicity) reveal important
data for understanding the software evolution. Additionally, the analysis of sev-
eral metrics, combined with identifying their inter-dependencies and relations,
can frequently display the actual, non-trivial causes for the observed phenome-
na, that otherwise could be impossible when analyzed in separation.

There are different tools on the market that help collecting, analyzing and
visualizing metrics. Plain calculators process the source code and produce val-
ues at for various metrics and at different levels (e.g. Eclipse Metrics Plugin
[EMP], PMD [PMD]. More sophisticated tools offer the analysis for series of
measurements and provide their own statistical capabilities or export data to
external systems (e.g. SonarQube [SQ], Alitheia Core [GS09]).

Code smells propose another model of source code quality. They focus not
on individual metrics, but on describing symptoms revealing deeper, more com-
plex problems. There are different approaches to identification and detection of
code smells. The most popular method is based on detection strategies, [Mar04]
– quantifiable logical expressions composed of different metrics and calibrated
to reflect the perception of a given code smell. This model includes both metrics
and their interpretation, and effectively elevates metrics to a higher level of
abstraction.

10.2 Concept of the system

10.2.1 Requirements

The initial vision of the tool presented in the previous section, has been trans-
formed into a set of specific requirements. We chose user stories as a method
for describing and managing them. User stories are compact, user-centric, and
allow for capturing various points of view [Bec99]. A story is a structured nar-
rative sentence, reflecting a role (who typically describes the initiator and bene-
ficiary of the story), a desire (describing the functionality required by the user)

E2A – An Extensible Evolution Analyzer for Software Repositories 169

and the benefit (which reflects the rationale for the function). For E2A, there is
only one role: a user.
Package A: Metrics management

A1: Selection of metrics
As a user of the system, I want to be selecting metrics to be calculated.

A2: Selection of the granularity level
As a user of the system, I want to calculate metrics values at different
granularity levels: package, class and method.

A3: Analysis of a branch in the repository
As a user of the system, I want to analyze a selected branch in the reposi-
tory and analyze the evolution of a particular release.

A4: Comparative analysis of branches in the repository
As a user of the system, I want to compare the evolution of metrics values
on selected development branches in order to observe how the selected
qualitative characteristics changed with time.

A5: Adding new metrics definitions
As a user of the system, I want to add new metrics definitions without
changing and recompiling the existing system, in order to easily extend
capabilities of the system.

Package B: Visualization
B1: Visualization of metrics

As a user of the system, I want to visualize metrics for selected elements
of the system, in order to easily analyze the dynamics of the change and
relations between metrics. It is essential to present several metrics simul-
taneously.

B2: Identification of classes of particular interest
As a user of the system, I want to process and aggregate values of the
metrics in all classes/packages, in order to identify classes that require
further analysis.

B3: Reporting
As a user of the system, I want to be able generating report on my current
analysis in a format accepted by MS Excel, in order to continue the anal-
ysis outside the system.

Package C: Storage
C1: Caching and storing the data

As a user of the system, I want to retrieve data from repository only once
and calculate the metrics several times without a need to reconnect, in or-

170 Software Engineering from Research and Practice Perspectives

der to reduce time required to analyze the projects. Before closing the
system the current analysis should be stored.

10.2.2 Architecture

The tool is composed of two main modules: (i) a code analysis module and (ii)
a graphical UI.

The code analysis module has layered architecture, in which every layer de-
pends on the layer below, and their interactions are described by well-defined
contracts. Such structure enables replacing selected layers without affecting the
remaining parts of the system, e.g. changing the library responsible for handling
the access to the repository would not require changes in the code analysis com-
ponents. Specifically, there are 4 layers in that module:

• repository access, responsible for running all file-based operations on
the repository; it also encapsulates the SVC protocol being used;

• compilation units, responsible for grouping files (transformed to
compilation units) in revisions or development branches;

• Abstract Syntax Tree (AST), which generates syntax trees for the
selected compilation units;

• metrics calculators that operates on ASTs generated from selected
revisions or branches.

In order to additionally separate the layers and facilitate declarative depend-
ency resolution, the communication between them is based on the Dependency
Injection pattern.

The UI module has been implemented as an Eclipse plugin, in order to take
advantage of several useful services offered by this platform or available as
external components (in particular, JDT AST and metrics calculators). The UI
module is tightly coupled to all layers within the code analysis module. This
appeared necessary in order to exploit specific features of the accessed SVC
(like Subversion or Git).

10.2.3 Overview of the analysis process

In general, the tool offers two operational modes:
• analysis of revisions in a selected branch,
• comparative analysis of several branches.

In both modes, a revision is the basic notion. It is the snapshot of state of re-
pository at particular time. Other elements of the tool, like compilation units or
metrics values, are associated with a given revision. In case of the comparative
analysis of several branches, each of them is also analyzed as a revision.

E2A – An Extensible Evolution Analyzer for Software Repositories 171

The analysis starts with examining history of the selected branch. As a result,

a list of changes in subsequent revisions is generated, which is further used for
reconstructing the source files. Two options are available:

• querying the repository for a single source file content in a selected
revision (which is costly, especially for remote repositories),

• incremental retrieval of subsequent revisions of the source file into a
local working copy in a temporary folder (much more efficient).

At that point the lists with changes in particular version, along with the
source files, is delivered to the code analysis module. They are compiled and
transformed to the compilation units; additionally, the AST is generated, which
is required for metrics calculation. The latter ones are organized into code
graphs, stored separately for every revision. Noticeably, the code graph is con-
structed incrementally, whereas its snapshots are stored. Additionally, these
snapshots can be saved to a file and retrieved later, which helps the user in man-
aging the analysis process. Next, the code graphs, containing compilation units,
are sorted by version. In that form the data is made available to the metrics cal-
culators. There are two types of metrics: base measures and derive measures.
The base measures just count occurrences of a given phenomenon, while the
derive measures collect results from a set of compilation units and aggregates
them according to a selected strategy: an average, a maximum, a minimum or a
sum of particular values.

Due to the adopted iterative method of processing repository data, the main
limitation of the tool is the need for analyzing the entire selected branch, start-
ing from the first revision. It is particularly visible in case of multi-projects re-
positories, which often contain a large number of revisions. Moreover, public
repositories (e.g. Google Code) often impose a limit of queries a user can issue
in a time period. To address this issue, E2A checkouts a working copy of the
analyzed project, which allows for using local queries instead of remote ones.
The increased consumption of the disk space in return seems an acceptable price
for that.

10.3 Example of use

In order to verify the capabilities of the tool on a real repository, we ana-
lyzed PowerMock – a FLOSS project hosted at Google Code1. It is a mock ob-
ject library meant to facilitate unit testing by instrumenting binary Java code
and generating mock objects and methods at runtime. The project has ca.1800

1 https://code.google.com/p/powermock

172 Software Engineering from Research and Practice Perspectives

revisions in repository, and its development dates back to 2008. Since then it
has had 29 releases (tagged in repository). We analyzed ca. 400 different compi-
lation units at two levels of granularity: revisions and releases.

There are three main modules that comprise the project: core, modules, re-
flect. In release analysis, we analyzed them separately (except for the program-
ming examples stored in repository and the API for other libraries). Due to
space limitations, we present only some of the problems and solutions. In revi-
sion analysis, we focused on the main branch (trunk).

10.3.1 Analysis of releases

The analysis of the project's health starts with an overview of the average
cyclomatic complexity for entire system. Figure 10.1 presents how the system
size changed between releases 0.5 and 1.5. System was growing steadily, except
for the releases 1.0-1.3, when we observe two sudden size outbursts, separated
by a stability period, in which particular classes were relatively large and con-
tained numerous methods. Later, the relation between code size and the method
number became moderate, which probably was caused by performing refactor-
ing that balanced the responsibility of individual classes.

Figure 10.2 presents again the system complexity, supplemented with data of
the number of types in the system (red), average depth of inheritance (green)
and total number of subclasses in the system (violet). The growth of the inher-
itance metrics values, accompanied by the greatest drop of complexity (marked
with a dashed line), may suggest intensive refactoring activities that improved
the reuse of superclasses. In this case, extending the depth of inheritance tree
(i.e. extracting intermediate classes) could be used for reducing complexity of
the implementation classes in the lower part of the tree.

In order to identify the module responsible for complexity variation, we ana-
lyzed the complexity of individual components (reflect, modules and code),
depicted at Figure 10.3. It turned out that the reflect package is mostly responsi-
ble for the overall increase in that metric (the average complexity appears sig-
nificantly higher than for the entire system).
Moreover, the complexity was moderated simultaneously with the inheritance
changes in the component, which seems to confirm the aforementioned hypoth-
esis. However, as presented at Figure 10.4, the modules component demon-
strates a different dynamics. In the previously mentioned period (releases 1.0-
1.3), we observe only a small growth of complexity for that component, and the
changes in inheritance hierarchy appear in recent releases. Effectively, this

E2A – An Extensible Evolution Analyzer for Software Repositories 173

component is developed in a more balanced way, with a moderate growth of
complexity.

Figure 10.1. System size (#types, #LOC, #methods), by release.

Figure 10.2. System complexity, by release.

174 Software Engineering from Research and Practice Perspectives

10.3.2 Revision analysis within a branch

The revision analysis was conducted on subsequent committed revisions of the
main development branch (trunk). Unlike the previous analysis, this one ignores
the release tags and presents the data for all revisions.

The results of the complexity measurement are presented in Figure 10.5. We
can identify the revision that dramatically increased the total LOC and CC met-
rics for entire project. After referring to the source code, we identified a huge
refactoring that was applied at that time (that was also suggested by the commit
comment). Next, we analyzed the impact of the refactoring on the average com-
plexity of the system. It increased the complexity and also increased the differ-
ences between classes. Later, despite the growth of complexity for entire sys-
tem, the individual classes became slightly less complex on average.

As a result of the analysis conducted by E2A on the PowerMock system, we
identified various periods in the history of the system that were important from
the source quality perspective. We also examined also the refactoring mecha-
nisms applied by the developers in response to deteriorating code quality and
evaluated their effectiveness.

Fig 10.3. Complexity of package reflect, by release.

E2A – An Extensible Evolution Analyzer for Software Repositories 175

10.4 Related work

The growing importance of software maintenance stimulated development of
several tools for analyzing the evolution of software projects, both in industry
and academia. Selected tools are briefly described below.

SonarQube [SQ] is probably the most popular platform of this kind, aiming
at monitoring the quality during development. It supports several programming
languages and offers various reports on different attributes of code quality. It
can be also extended through a designated API and integrated with most popular
continuous integration and build tools, which attracted the developers communi-
ty.

Figure 10.4. Complexity of package modules, by release.

Klocwork Insight [KI] is a commercial tool for monitoring quality of code in

popular programming languages. It is focused mainly on discovering defects,
analyzing possible security flaws and visualizing the trends.

Several fault-detection and monitoring features are present in several Para-
soft tools [PAR]. However, they are focused mostly on the security and error-
prevention, not directly on the code quality and maintainability.

176 Software Engineering from Research and Practice Perspectives

Kenyon [BWKG05] is an example of a research tool, aimed at providing a

universal platform for collecting and pre-processing data for further analysis in
external applications. It is based on slightly different notions when compared to
E2A, but the approaches are similar.

Figure10.5. System size, by revision.

10.5 Summary

In this work we presented E2A – an extensible tool for collecting, analyzing and
visualizing the data from SVN repositories. We showed how it can be used in
analysis of history of a software project, which helped us to understand and
interpret evolution processes that the system underwent. The system also fea-
tures an extension mechanism that allows for defining and embedding new met-
rics calculators. This helps researchers in experimenting at the study of software
evolution.

E2A – An Extensible Evolution Analyzer for Software Repositories 177

References

[Abr95] F. B. e Abreu: "The MOOD Metrics Set" Proc. ECOOP'95 Workshop on Met-
rics, 1995.

[Bec99] K. Beck: “Extreme Programming Explained”. Addison-Wesley, 1999.
[BW84] V. Basili and D. Weiss. A methodology for collecting valid software engineering

data. IEEE Transactions on Software Engineering, 10(3):728-738, Nov 1984.
[BWKG05] J. Bevan, E. J. Whitehead, S. Kim, M. Godfrey: “Facilitating Software Evolution

Research with Keynon”. Proc. Of ESEC-FSE, 2005, pp. 177-186.
[CK94] S. R. Chidamber and C. F. Kemerer: “A metrics suite for object oriented design.

IEEE Transactions on Software Engineering”, 20(6):476-493, 1994.
[EMP] Eclipse Metrics plugin website, http://eclipsemetrics.sf.net (visited May 2014)
[FBBO+99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts: “Refactoring: Im-

proving the Design of Existing Code”. Addison-Wesley, 1999
[GS09] G. Gousios, D. Spinellis: “Alitheia Core: An Extensible Software Quality Moni-

toring Platform”. Proc. of 31st ICSE. IEEE, 2009, pp. 579-582.
[KI] Klocwork Insight website, http://www.klocwork.com/products/insight/ (visited

May 2014).
[Leh96] M. M. Lehman: “Laws of software evolution revisited”. Software Process Tech-

nology. LNCS 1149, 1996, pp 108-124.
[Mar04] R. Marinescu: “Detection Strategies: Metric Based Rules for Detecting Design

Flaws”. Proc. of 20th ICSM, 2004, pp. 350-359.
[PAR] Parasoft website, http://www.parasoft.com/ (visited May 2014).
[PMD] PMD website, http://pmd.sf.net (visited May 2014).
[SQ] SonarQube website, http://www.sonarqube.org/ (visited May 2014).

Chapter 11

Can the source code be reviewed
on a smartphone?

Although code reviews are a well-known practice with a long tradition, they were not widely
used in software industry. One of the reasons for this may be the fact that they are not most enjoyable
engineering task when compared to design and coding. Currently, with a number of software tools
supporting desktop or web-based reviews which makes the review more comfortable and pleasant
task, it seems that the situation improves. The goal of this chapter is to go further and examine
the concept of code reviews performed on mobile devices. The chapter describes the developed
dedicated Android tool for code reviews, overviews its experimental evaluation and reports some
promising results.

One of the key challenges in software development is maintaining source code
quality, which comprises several aspects, such as meeting customer requirements,
performance, extensibility or readability. For these aspects software industry de-
veloped dedicated techniques and tools. For instance functional integrity is well
covered by testing and profiling tools and practices which are still developed. On
the other hand, supporting code quality in terms of its design and readability is
much more difficult aspect. While some tools are available (e.g. checkstyle),
still the most appraised practice are regular code reviews (in its various forms)
[Coh06], which are known in software industry for nearly four decades.

As every practice, code review has its flaws. Probably the greatest flaw is lack
of proper process support and management encouragement. While every devel-
oper knows the practice in theory, it is still seldom used in an average software
team. Fortunately, current trends in software industry seem favourable for code
review by providing tools such as Gerrit [Mil13] or technique of Pull Requests
which not only technically facilitate the review but also impose it into the devel-
opment process.

This chapter contributes to these trends with the idea of code review performed
on mobile devices, which are ubiquitous these days. The main purpose behind the
idea is to encourage developers to bring more focus to code quality and frequent
reviews by making them easily available on a train during business trips or in
a comfortable sofa in a company social room. Having considered the physical
limitations of mobile devices several questions arise on the efficiency of such re-
views, including small screens and uncomfortable virtual keyboards. This chapter
provides preliminary answers to these questions by presenting early findings on

180 Software Engineering from Research and Practice Perspectives

the mobile reviews efficiency and quality based on the experimental comparison
of the mobile and classic desktop-based reviews.

11.1. Code review and related work

Code review practice origins from formal inspections proposed by M. Fagan
[Fag76]. An inspection is defined as stage-based process which can be applied
to all artefacts of software project including documentation, source code or tests.
The process is driven by meetings (repeated endlessly until artefacts are consid-
ered completed), which are attended by team members assigned to specific roles
including authors, reviewers and moderators. Fagan claims that code inspections
allow to spare 54 hours per each 1000 lines of code. These claims are confirmed
by other, much more contemporary, studies as well [Rad04, Coh06]. Code in-
spections are also praised [Wel10] for their learning and knowledge sharing ef-
fects which greatly speed up development and reduce project risk in case of core
developers leave the team.

While code inspections seem valuable, they are also perceived as expensive.
[Rad04, FBV05] indicate costs as one of the main reasons for which inspections
are not more widely used in software development. To cut the costs, developers
experiment with more lightweight variants of Fagan’s inspections. This results
in different types of inspections leading to inspection types and new terminology
[Coh06], in which inspections are replaced by code review or peer review.

Peer reviews do not assume any phases of development. They are performed
in code-assess-respond style instead. Each piece of work that is done must be
reviewed by a peer – strictly speaking, another developer in a team. This approach
is more flexible and can be adjusted to internal team process and preferences.

Even though peer reviews are less expensive and more flexible than formal
Fagan inspections, they are not widely used neither. [Rad04] suggests that the
fundamental reason for this may be the fact that they are not most enjoyable engi-
neering task when compared to design and coding.

Fortunately, over recent years software industry has developed a more positive
approach to reviews. To make the developers life easier several dedicated tools
are in widely use such as Gerrit [Mil13], Attlasian Crucible, CodeRemarks1 and
others. They facilitate the process by displaying code with an ability to review it
by publishing comments. Added remarks are sent to the code’s author who can
respond to them and fix the mistakes.

1 http://www.coderemarks.com/

Can the source code be reviewed on a smartphone? 181

Specialized code review application are not the only choice these days. Patches
or pull requests from version control system can be subject of reviews too. Ver-
sion control systems like Git [LM12] or SVN allow to create excerpts with list of
changes to be made to the code. Such lists can be reviewed before they are merged
to the code, incorporating all code review benefits. The major flaw when using this
method is that subsequent pull requests or patches can be hardly compared with
each other.

It seems that the proper tooling support improves the enjoyment factor of the
reviews and developers are more keen to perform it. Thus, this chapter proposes a
step further: to support code reviews on mobile devices which got common these
days. It is observed that all existing solutions are designed for typical developer
environment which is desktop or laptop. On the other hand, code review is more
about reading than writing and therefore can have more in common with studying
a book than coding. Taking developer out of his usual workplace to social room
or comfortable sofa should have a positive impact on his/her attitude to this prac-
tice. However, a question arise whether mobile code review will be as efficient as
performed on a desktop. This chapter aims at providing preliminary experimental
findings in this matter. No other similar or even related research is reported in
literature so far.

11.2. Applied research method

To examine the effectiveness of mobile reviews, a comparison of mobile and
desktop reviews needs to be performed. That is why the applied research method
consists of two following elements:
1. dedicated review tool for mobile device created for the purpose of the research
2. experimental comparison of the results obtained from mobile reviews and

desktop reviews
Both elements are described in detail in consecutive subsections.

11.2.1. Tool for mobile code reviews

The developed tool is targeted at Android platform being the most popular in
Poland at the moment. This popularity was crucial for the experiment purposes
to make sure we will get good balance between mobile and desktop reviews. The
screenshot of the working application is presented in Figure 11.1.

The most important functions can summarized as follows:

— displaying source code with syntax coloring and line numbering

182 Software Engineering from Research and Practice Perspectives

Figure 11.1. Source code displayed in mobile application

— selecting lines (see item #7 in Figure 11.1) and attaching comment to it (by
using icons from #1 to #5 in Figure 11.1)

— marking lines that have comments (green background of line number - see
item #6 in Figure 11.1)

— sharing comments with others

To overcome the lack of physical keyboard and improve the comfort of re-
viewer’s work some innovations are introduced to the presented solution. The
most important one are predefined reviewer’s comments which are easily acces-
sible from top application menu (icons #1 to #3 in Figure 11.1) with one finger
touch. In addition, it is possible to record voice comments and hook them to spe-
cific line of code (icon #5 in Figure 11.1). These features are created in order to
benefit as much as possible from the capabilities of modern mobile devices. They
also minimize the inconvenience of typing in the comments when using virtual
on-screen keyboard (icon #4 in Figure 11.1).

As for sharing comments, they can be distributed with any Android service
that allows to share files - including e-mail, Bluetooth or Wi-Fi.

Can the source code be reviewed on a smartphone? 183

11.2.2. Experimental comparison

The prepared experiment was designed specifically for comparison of the clas-
sic (desktop) and mobile review.

Participants

The participants consisted of Computer Science students from 3rd and 4th year
of BSc studies degree from the University of Science and Technology. The study
involved 55 programmers, 23 of whom did code review using their own mobile
devices, mainly smartphones. This allowed to obtain some diversity in screen
resolution and inspect its influence on the work comfort.

Students were educated in code smells and review process. They know Java
which mitigates the risk of failing the review task due to a lack of syntax or se-
mantics knowledge of a language. Short introduction to examined review tools
has been performed before the experiment.

Compared tools

Each participant performed a code review either on mobile device or on PC
computer using a CodeRemarks online tool for code review. The decision whether
a particular student should use a mobile device or PC was left to himself, not to
impose specific environment in which he could feel uncomfortable. Both mobile
phones and tablets were allowed.

CodeRemarks has been chosen for desktop reviews because it does not need
any installation or configuration on a reviewer machine. It offers features compa-
rable to the mobile application (display one source file, add text comments). Each
reviewer has been given unique URL address where he could review the code. It
made both distributing the task and collecting results simple.

Obviously, developed Android application was prepared for the experiment
needs. The prepared version could only display source code that was the subject
of study. After the timeout had been reached, application automatically sent com-
ments to the author, including screen size and orientation of device when the code
review was performed.

Timing

Organization of volunteers for an experiment is always a problem for re-
searches. Therefore, to obtain a reasonable number of participants, it was decided
to carry out the review task during student classrooms. This enforced a strict time
limit. Based on a few initial (testing) reviews without a timeout it was decided that

184 Software Engineering from Research and Practice Perspectives

seven minutes should suffice for the needs of the preliminary evaluation. It is far
less time that should be dedicated for review of such code but should be enough
for initial comparison of the PC and mobile code review efficiency.

Gathered data

The following data was gather for each participant:
— list of review comments including line number, type and content of the com-

ment.
— screen resolution (for Android reviews only)
— screen orientation (for Android reviews only)
— review duration

Can the source code be reviewed on a smartphone? 185

Mobile reviews PC reviews
0

2

4

6

8
A

ve
ra

ge
co

m
m

en
ts

co
un

t

All comments
Valuable comments

Figure 11.2. Average number of comments

Task

Each participant obtained the same task which was a prepared Java class to
be reviewed. The source code of the Java class that was the subject of the study
is presented in Appendix 1, Listing 1. The code was a fragment of real program
and was deliberately ”enhanced” to contain more defects (code smells). As a
result, 120 lines of code contain 30 code smells, 26 of which were known before
the experiment (the rest 4 were identified by the participants). The injected code
smells were based on a list published in Clean Code [Mar09] and on authors’
experience.

11.3. Results

The experiment reviews were collected and analyzed after the experiment was
done. Each of the reviewer comment was labeled as valuable (when it pointed to a
recognized code smell) or worthless (when the comment could not be understood
or did not point to any code smell). Several different aspects were inspected during
experiment analysis. The most interesting ones are presented here.

11.3.1. The number of comments

The first aspect is the average total number of comments added in one review
session. Average number of comments per review for Android tool is 8 while
for desktop it is below 6. However, when only valuable comments are taken into

186 Software Engineering from Research and Practice Perspectives

Mobile reviews PC Reviews

Valuable comments
Worthless comments

57.1%
42.9%

74%

26%

Figure 11.3. Comparison of valuable and worthless comments

Predefined comments
Text comments

Voice comments

75.8%

22.7%

1.5%

Figure 11.4. Type of comments added when using mobile application

consideration the difference is much smaller and fluctuates around 4.5 comments
per review. Quantities are visualized in Figure 11.2.

While the number of detected code smells in one review is comparable for both
types of review, it can not be argued that mobile devices introduces unnecessary
clutter by many worthless remarks. Relation of valuable and worthless comments
added to the code are visualized in Figure 11.3.

It might be expected that usability of mobile application for code reviews is
relatively small when compared to large PC’s screen.

In order to verify this statement we inspected the number of comments which
were misplaced (i.e. assigned to a wrong line number, but the comment’s content
would still allow the programmer to understand it).

Results do not differ much in both types of reviews. There are 9.3% and 9.9%
of misplaced remarks in mobile and PC reviews respectively.

Can the source code be reviewed on a smartphone? 187

11.3.2. Mobile application usage

The majority of examined Android reviewers performed reviews in vertical
screen orientation (75.8%). Devices that were held vertically are tablets with high
screen resolution. They still allow to display the whole lines of code without line
breaking.

We tried to investigate relation between screen resolution and comments quan-
tity or value, but the results have not reveal any pattern.

As for the type of the comments that were attached to the source code, their
frequency is visualized in Figure 11.4. The vast majority of students used prede-
fined comments feature. There were few participants that added voice comment.

11.3.3. Detected code smells

Four of the code smells that had been injected into the reviewed source code
have not been found. These smells are:

— long list of imports not shortened with wildcard import (J12) - lines from 21
to 24 on the Listing 1

— overridden safety by unnecessary definition of serialVersionUID for
Serializable class (G4) – line 31

— flag (boolean) argument should be replaced by another method (F3, G15) –
line 48

— hidden temporal coupling of methods (G31) – lines 61 and 62

However, reviewers managed to find four new flaws that were unknown at the
time of preparing the task:

— ”reinventing the wheel” by checking list.size() > 0 instead of using
list.isEmpty() from java.util.List interface – lines 80 and 94

— inconsistent code formatting in two places (G24) – lines from 104 to 107 and
line 116

— no defensive copy of collection returned by a method - line 113

The most conspicuous flaws had been found the most frequently. Three of the
most recognizable code smells are shown in Table 11.1.

Another examined aspect is the first code smell that was recognized in every
review session. Surprisingly, there are only 7 first-smells on mobile code reviews
whereas on PCs there are 12.

2 codes of code smells as defined in Clean Code [Mar09]

188 Software Engineering from Research and Practice Perspectives

Table 11.1. Code defects with the highest detection rate.

Defect Lines Detection (mobile) Detection (PC)
unnecessary underscore prefixes

for private class fields (N6) 34, 36 61% 47%
commented out, obsolete code (C5) 99 - 101 52% 31%
ambiguous method name (N1, N4) 67 43% 66%

11.4. Discussion

The summarized results presented in Section 11.3 allow to make several inter-
esting observations.

11.4.1. Mobile code reviews might need more time to become popular
Statistics of comments correctness shown in Figure 11.3 indicates, that there

were far too many worthless comments in mobile code reviews. There can be a
few reasons of such situation:

— participants have seen the mobile application for the first time, so they might
have wanted to test how it works by adding random comment,

— they were unwilling to perform code review on small screens,
— students, of whom the majority of participants consisted, might have not paid

much attention to quality of the review.

While web- or desktop-based reviews are proven to be effective, mobile code
reviews have not been tried before. Thus, in some cases developers require time
to make their minds and use the mobile application. This is the argument that
appeared the most often when asking participants whether they would use such
application in their work.

11.4.2. Code reviews are effective regardless of the method of their
performing

Having ignored worthless comments, both PC and mobile reviews are com-
parable when the quantity of found code smells in one session is considered. It
means that mobile reviews are not worse than PC reviews.

As for the efficiency of code reviews, the average number of code smells found
in both types of reviews is equal to 4.68. Comparing it to the total number of
known defects of the reviewed code we get the amount of 15.6% code smells
found in one review. It is much fewer than the expected value of 60% of defects
being detected when practicing code reviews [MVM09].

Can the source code be reviewed on a smartphone? 189

However, when the time limit is taken into consideration, it is clear that re-
viewers were not able to find expected amount of code smells. The most efficient
reviews need to last 88 minutes per 188 lines of code [MVM09]. Therefore, re-
viewer would need 56 minutes for 120 lines of code. Experiment gave only seven
minutes, so we can calculate expected amount of defects found in conducted study
as:

x =
7

56
≈ 13% (1)

The value is much more appropriate now and proves both code reviews effi-
ciency and the described ideal speed of performing them.

11.4.3. Mobile code reviews are not uncomfortable

This statement is formed mainly based on almost the same frequency of mis-
placed comments in PC and mobile reviews. The main reason for gathering such
information about remarks added to the code was belief that results of mobile re-
views would contain many comments added to a wrong line. However, performed
analysis did not prove this expectation. It turns out that it is equally easy to tap the
wrong line on touch display and to click it on PC’s screen. Given also predefined
and voice comments on mobile application, it can be even more comfortable tool
to use.

11.4.4. Predefined comments are promising

Predefined comments were the most frequently added when using mobile ap-
plication. It is surprising that such feature is not common in existing tools support-
ing code reviews. Participants were excited about possibility of adding a comment
to the code by single tap. In this way, they can make the review much quicker and
in more comfortable manner.

There were cases when predefined comment added to the code did not address
code smell exactly. As an example, predefined comment ”Poor naming” added to
the line with useless TWO = 2 constant does not express clearly the intention of
the reviewer on how improve the code. However, there is a high probability that
the author of the code reading such remark would think about this poor naming
comment which should lead to removal (or renaming) it. Therefore, such com-
ments in the study have been marked as valuable.

During the experiment, application had the predefined comments hardcoded.
Many participants suggested allowing to add own predefined comments on project

190 Software Engineering from Research and Practice Perspectives

basis. Such enhancement would allow to adjust vocabulary and common types of
defects to the reviewer which would make them even more useful.

11.4.5. Voice comments introduce communication problems

Very few participants used feature of voice comments. It indicates some prob-
lems with this technique.

Firstly, the way of performing the study should be taken into account. Most of
the reviews were done simultaneously in a group of students. Recording a voice
comment in public can be perceived as weird behavior when everybody hears what
reviewer thinks about particular fragment of a code. Moreover, if each participant
would start to record a voice comment, they would be hard to understand.

It seems that this can affect also real developers who work in co-located teams.
However, for freelance, open-source or distributed developers this way of per-
forming reviews can provide some practical value.

11.4.6. Small screen enhances details

Interestingly, there are some defects that were found during mobile reviews
only. These are:

— typographic error (recodedFile as method argument name instead of
recordedFile) – line 91 on Listing 1

— inconsistent formatting of code – lack of space before opening curly bracket –
line 116

This may lead to a conclusion that displaying source code on small screens
enforces reviewers to pay more attention on details of the code. When seeing only
a few lines of code at the moment, they can focus more on such trivialities.

On the other hand, small screen prevents reviewers from seeing the whole
picture of a code being reviewed. Semantic error in the code has been found only
during PC reviews. It required detail analysis of the entire class and therefore it
was hard to be detected on mobile devices.

11.4.7. Small screen encourages reviewers to analyse code line by line

The first code smells that were detected reveal a pattern which was used to
perform code reviews on both devices. Defects placed in the beginning of the file
(lines from 1 to 48) were found as first-smells in over 70% of mobile reviews and
in almost 50% of PC reviews. It indicates that reviewing with mobile application
enforces to analyse source code line by line.

Can the source code be reviewed on a smartphone? 191

11.5. Conclusions and further work

The aim of this research was to inspect the aspect of code reviews in the con-
text of mobile devices. There are two important conclusions that need to be drawn
from this research.

First of all, mobile reviews are proven to be as efficient as classic (desktop)
code reviews we do these days. Developed prototype Android tool for code re-
views and organized experiment prove that in some aspects mobile reviews can be
even more convenient than desktop reviews. Having agreed that the comfort and
enjoyment factor are important for developers [Rad04], we believe that mobile
reviews will find their practical application in software industry in near future.

Secondly, the conducted study confirmed that code reviews are really an effec-
tive way of ensuring quality of a source code. Almost all of the code smells that
were prepared for the experiment were found and the collected comments were
assessed as correct and helpful in fixing the errors and making the code more
readable and clean.

Further research should include organization of longer experiment with more
participants involved in order to confirm the preliminary results and observations.
An interesting aspect would be also to compare both types of reviews in the con-
text of a complex code structure. In this way, the observation that the small screen
of mobile device limits the reviewer in obtaining a bigger picture of the source
code could be verified.

What is more, it is planned to deploy the prototype Android tool in a real
development environment. A good candidate is a project developed at University
of Science and Technology for Government Protection Bureau (funded by Polish
National Centre for Research and Development). The development team utilizes
Gerrit code review application and it already tried out the prototype Android tool
with positive feedback. The deployment will allow for comparison of both tools
(Gerrit vs Android tool) which can produce interesting results.

For this purpose the Android tool must be further enhanced. The most de-
manded features are:

— ability to open many files at once
— diff feature allowing to display previous and current version of the code
— support for version control systems
— support for communication with existing code review tools for desktop

192 Software Engineering from Research and Practice Perspectives

Acknowledgements

The research leading to these results has received funding from the research
project No. DOBR-BIO4/060/13423/2013, funded by the Polish National Centre
for Research and Development.

References

[Coh06] J.A. Cohen. Best Kept Secrets of Peer Code Review. Printing Systems, 2006.
[Fag76] M. E. Fagan. Design and code inspections to reduce errors in program de-

velopment. IBM Systems Journal, 15(3):182–211, 1976.
[FBV05] Bernd Freimut, Lionel C. Briand, and Ferdinand Vollei. Determining inspec-

tion cost-effectiveness by combining project data and expert opinion. IEEE
Transactions on Software Engineering, 31(12):1074–1092, 2005.

[LM12] Jon Loeliger and Matthew McCullough. Version Control with Git: Power-
ful tools and techniques for collaborative software development. O’Reilly
Media, 2012.

[Mar09] Robert C. Martin. Clean Code, A Handbook of Agile Software Craftsman-
ship. Pearson Education, Inc., 2009.

[Mil13] Luca Milanesio. Learning Gerrit Code Review. Packt Publishing, 2013.
[MVM09] Casper Lassenius Mika V. Mäntylä. What types of defects are really discov-

ered in code reviews? IEEE Transactions on Software Engineering, 35(3):5,
2009.

[Rad04] R.A. Radice. High Quality Low Cost Software Inspections. Paradoxicon
Publishing, 2004.

[Wel10] Lisa Wells. 9 reasons to review code. http://blog.smartbear.com/
software-quality/9-reasons-to-review-code/ , 2010.

Can the source code be reviewed on a smartphone? 193

Appendix 1 - Source code reviewed during experiment

1 package pl.fracz.mcr.source;
2

3 /*
4 2013-10-23, fracz, first implementation
5 2013-10-30, fracz, added syntax highlighting
6 2014-02-26, fracz, added ability to add voice comment
7 */
8

9 import android.annotation.SuppressLint;
10 import android.content.Context;
11 import android.graphics.Color;
12 import android.graphics.Typeface;
13 import android.text.Html;
14 import android.widget.LinearLayout;
15 import android.widget.TextView;
16

17 import java.io.File;
18 import java.io.Serializable;
19 import java.util.List;
20

21 import pl.fracz.mcr.comment.Comment;
22 import pl.fracz.mcr.comment.CommentNotAddedException;
23 import pl.fracz.mcr.comment.TextComment;
24 import pl.fracz.mcr.comment.VoiceComment;
25

26 /**
27 * View that represents one line of code.
28 */
29 @SuppressLint("ViewConstructor")
30 public class Line extends LinearLayout implements Serializable {
31 private static final long serialVersionUID = 3076583280108678995L;
32 private static final int TWO = 2;
33

34 private final int _lineNumber;
35

36 private final String _lineOfCode;
37

38 // holds the line number
39 private final TextView lineNumberView;
40

41 private final TextView lineContent;
42

43 private final SourceFile sourceFile;
44

45 private List<Comment> comments;
46

47 public Line(Context context, SourceFile sourceFile, int lineNumber,
48 String lineOfCode, boolean syntaxColor) {
49 super(context);
50 this.sourceFile = sourceFile;

194 Software Engineering from Research and Practice Perspectives

51 this._lineNumber = lineNumber;
52 this._lineOfCode = lineOfCode;
53 setOrientation(LinearLayout.HORIZONTAL);
54

55 lineNumberView = new TextView(getContext());
56 lineNumberView.setText(String.format("%d.", lineNumber););
57 lineNumberView.setSingleLine();
58 lineNumberView.setWidth(30);
59 addView(lineNumberView);
60

61 TextView lineContent = new TextView(getContext());
62 addLineContent(syntaxColor);
63

64 this.comments = sourceFile.getComments().getComments(this);
65 }
66

67 public int get() {
68 return _lineNumber;
69 }
70

71 /**
72 * Adds a text comment.
73 *
74 * @param comment
75 * @throws CommentNotAddedException
76 */
77 public void addTextComment(String comment) throws

↪→ CommentNotAddedException {
78 sourceFile.getComments().addComment(this, new TextComment(comment));
79 this.comments = sourceFile.getComments().getComments(this);
80 if (comments.size() > 0) {
81 lineNumberView.setBackgroundColor(Color.parseColor("#008000"));
82 }
83 }
84

85 /**
86 * Adds a voice comment.
87 *
88 * @param recordedFile
89 * @throws CommentNotAddedException
90 */
91 public void createVoiceComment(File recodedFile) throws

↪→ CommentNotAddedException {
92 sourceFile.getComments().addComment(this, new

↪→ VoiceComment(recodedFile));
93 this.comments = sourceFile.getComments().getComments(this);
94 if (comments.size() > 0) {
95 lineNumberView.setBackgroundColor(Color.parseColor("#008000"));
96 }
97 }
98

99 // public void addVideoComment(File videoFile) throws
↪→ CommentNotAddedException {

Can the source code be reviewed on a smartphone? 195

100 //
101 // }
102

103 private void addLineContent(boolean syntaxColor){
104 if (!syntaxColor ||

↪→ !SyntaxHighlighter.canBeHighlighted(syntaxColor))
105 lineContent.setText(Html.fromHtml(lineOfCode));
106 else
107 lineContent.setText(SyntaxHighlighter.highlight(Html.

↪→ fromHtml(lineOfCode)));
108 lineContent.setTypeface(Typeface.MONOSPACE);
109 addView(lineContent);
110 }
111

112 public List<Comment> getComments() {
113 return this.comments;
114 }
115

116 public boolean hasConversation(){
117 sourceFile.markConversation(this);
118 return getComments().size() > TWO;
119 }
120 }

Listing 1. Source code reviewed during experiment

Authors and affiliations

Preface
Lech Madeyski
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics
lech.madeyski@pwr.edu.pl
Mirosław Ochodek
Poznan University of Technology, Faculty of Computing
miroslaw.ochodek@cs.put.poznan.pl

CHAPTER 1
Jakub Jurkiewicz
Poznan University of Technology, Faculty of Computing
jakub.jurkiewicz@cs.put.poznan.pl
Piotr Kosiuczenko
Military University of Technology in Warsaw, Department of Cybernetics
pkosoiczenko@wat.edu.pl
Lech Madeyski
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics
lech.madeyski@pwr.edu.pl
Mirosław Ochodek
Poznan University of Technology, Faculty of Computing
miroslaw.ochodek@cs.put.poznan.pl
Cezary Orłowski
IBM Center for Advanced Studies on Campus, Gdańsk,
cor@zie.pg.gda.pl
Łukasz Radliński
West Pomeranian University of Technology,
Faculty of Computer Science and Information Technology
lukasz.radlinski@zut.edu.pl

CHAPTER 2
Marek Majchrzak
Capgemini Poland
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics
marek.majchrzak@capgemini.com

198 Software Engineering from Research and Practice Perspectives

Łukasz Stilger
Capgemini Poland
lukasz.stilger@capgemini.com
Marek Matczak
Capgemini Poland
marek.matczak@capgemini.com

CHAPTER 3
Tomasz Sitek
Gdańsk University of Technology, Faculty of Management and Economics
tsitek@zie.pg.gda.pl
Artur Ziółkowski
Gdańsk University of Technology, Faculty of Management and Economics
aziolko@zie.pg.gda.pl

CHAPTER 4
Miklós Biró
Software Competence Center Hagenberg,
miklos.biro@scch.at

CHAPTER 5
Stanisław Jerzy Niepostyn

Warsaw University of Technology, Institute of Computer Science
S.Niepostyn@ii.pw.edu.pl
Andrzej Tyrowicz
Agencja Europejska, Andrzej Tyrowicz
a@tyrowicz.eu

CHAPTER 6
Łukasz Radliński
West Pomeranian University of Technology,
Faculty of Computer Science and Information Technology
lukasz.radlinski@zut.edu.pl

Authors and affiliations 199

CHAPTER 7
Bogumiła Hnatkowska
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics
Bogumila.Hnatkowska@pwr.edu.pl
Łukasz Wrona
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics

lukwro83@gmail.com

CHAPTER 8
Andrzej Ratkowski

Warsaw University of Technology,
Institute of Control and Computation Engineering
Krzysztof Gawryś

Warsaw University of Technology,
Institute of Control and Computation Engineering
Eliza Świątek
Warsaw University of Technology,
Institute of Control and Computation Engineering

CHAPTER 9
Ilona Bluemke

Warsaw University of Technology, Faculty of Electronics and Information
Technology, Institute of Computer Science
I.Bluemke@ii.pw.edu.pl

Anna Stepień
Warsaw University of Technology, Faculty of Electronics and Information
Technology, Institute of Computer Science
A.Stepien.1@stud.elka.pw.edu.pl

CHAPTER 10
Michał Ćmil
Poznan University of Technology, Faculty of Computing
cmilmichal@gmail.com
Bartosz Walter
Poznan University of Technology, Faculty of Computing
bartosz.walter@cs.put.poznan.pl

200 Software Engineering from Research and Practice Perspectives

CHAPTER 11
Wojciech Frącz
AGH University of Science and Technology
fracz@iisg.agh.edu.pl
Jacek Dajda
AGH University of Science and Technology
dajda@agh.edu.pl

