

Advances in Software Development

Scientific Editor

Jakub Swacha

Conferences organized by
Polish Information Processing Society:

VIII edition of the Congress of Young IT Scientists

XV edition of the Polish Conference

on Software Engineering

XX edition of Real Time Systems

were supported

by the Ministry of Science and Higher Education
within the program related to the implementation

of tasks of science dissemination
(Decision No 1064/P-DUN/2013 on 24/07/2013)

POLISH INFORMATION PROCESSING SOCIETY

Advances in Software Development

Scientific Editor

Jakub Swacha

Warszawa 2013

The Polish Information Processing Society
Scientific Council

prof. dr hab. Zdzisław Szyjewski – Chairman

dr hab. prof. PW Zygmunt Mazur – Vice-Chairman

dr hab. inż. prof. PG Cezary Orłowski – Vice-Chairman

dr hab. inż. prof. US Kesra Nermend - Amanuensis

prof. dr hab Leon Bobrowski

prof. dr hab. Janusz Górski

prof. dr hab. Zbigniew Huzar

prof. dr hab. Marian Noga

prof. dr hab. Ryszard Tadeusiewicz

prof. dr hab. Leszek Trybus

prof. dr hab. Krzysztof Zieliński

dr hab. prof. PS Wojciech Olejniczak

dr hab. inż. Lech Madeyski

dr Adrian Kapczyński

dr inż. Marek Valenta

Authors

Barbara Begier – CHAPTER 1, Walery Susłow, Michał Statkiewicz – CHAPTER 2,
Szymon Kijas, Andrzej Zalewski – CHAPTER 3, Jakub Swacha, Karolina Muszyńska,

Zygmunt Drążek – CHAPTER 4, Bartosz Wilk, Marek Kasztelnik, Marian Bubak –
CHAPTER 5, Mariusz Jarocki, Agata Półrola, Artur Niewiadomski, Wojciech Penczek,

Maciej Szreter – CHAPTER 6, Bogumiła Hnatkowska, Radosław Tumidajewicz –
CHAPTER 7, Tomasz Straszak, Michał Śmiałek – CHAPTER 8, Anna Derezińska, Piotr

Trzpil – CHAPTER 9, Michał Żebrowski, Andrzej Ratkowski – CHAPTER 10, Patryk
Czarnik, Jacek Chrząszcz, Aleksy Schubert – CHAPTER 11, Janusz Zalewski –

CHAPTER 12, Marek J.Greniewski – CHAPTER 13

Reviewers

Wojciech Cellary, Piotr Czapiewski, Zbigniew Czech, Włodzimierz Dąbrowski,
Norman Fenton, Tracy Hall, Jason Ho, Zbigniew Huzar, Magne Jørgensen, Stanisław
Kozielski, Bev Littlewood, Leszek A. Maciaszek, Lech Madeyski, Andrzej Marciniak,

Tomasz Muc, Ngoc Thanh Nguyen, Łukasz Radliński, Martin Shepperd, Andrzej
Stasiak, Zdzisław Szyjewski, Lech Tuzinkiewicz, Marek Valenta, Bartosz Walter

Scientific Editor

Jakub Swacha

Technical Editor

Łukasz Radliński

Copyright by Polish Information Processing Society, Warsaw 2013

ISBN 978-83-7518-597-3

Edition: I. Copies: 200. Publishing sheets: 9,95. Print sheets: 12,4.

Publisher, print and binding: PPH ZAPOL, al. Piastów 42, 71-062 Szczecin

Contents

Preface ... 11

1. Using Scrum or Scrumbut? ... 13

1.1. Introduction .. 13

1.2. About Scrum itself ... 14

1.3. Introducing Scrum process − starting with artifacts concerning
requirements ... 16

1.4. Monitoring sprint progress and its results .. 20

1.5. Conformity and observed incompatibilities with Scrum 22

1.6. Observations and conclusions .. 26

2. Prevention of conceptual errors in the system design 31

2.1. Introduction .. 31

2.2. The research material, the idea of extending the instrumentation 33

2.3. Example of the use of conceptual maps in the IS project 35

2.4. Example of using a checklist.. 37

2.5. Example of the use of a rich picture ... 40

2.6. Conclusions .. 41

3. The decision making model for design of service - oriented systems .. 45

3.1. Introduction .. 45

3.2. Documenting the evolution of service-oriented systems 47

3.3. Example ... 55

3.4. Related Work and Discussion .. 59

3.5. Summary and Outlook ... 61

4. Managing the adaptation of open-source software: the examples
of BalticMuseums 2.0 and BalticMuseums 2.0 Plus 63

 Contents 7

4.1. Introduction .. 63

4.2. BalticMuseums 2.0 and BalticMuseums 2.0 Plus projects 64

4.3. Reasons for using open-source software .. 65

4.4. Methodology for open-source software adaptation 66

4.5. Experiences from the BalticMuseums 2.0 project 73

4.6. Experiences from the BalticMuseums 2.0 Plus project 75

4.7. Conclusions .. 79

5. Software for eScience: from feature modeling to automatic setup
of environments ... 83

5.1. Introduction .. 83

5.2. Description of the proposed solution ... 84

5.3. Choice of technology ... 86

5.4. Tool and architecture evaluation .. 88

5.5. Research result: a refined architecture ... 89

5.6. Related work .. 91

5.7. Conclusions and future work ... 92

6. PlanICS 2.0 – a web service composition system 97

6.1. Introduction .. 97

6.2. Related work .. 99

6.3. Basic notions .. 100

6.4. Planning ... 103

6.5. Conclusions and future work ... 106

7. Test case generation on the base of business rules described
in structural natural language .. 109

7.1. Introduction .. 109

7.2. Business rules .. 110

7.3. Testing patterns .. 112

7.4. Proposed approach to test case generation 113

7.5. Case study .. 115

7.6. Conclusions .. 117

8. Acceptance test generation based on detailed use case models 121

8 Advances in Software Development

8.1. Introduction .. 121

8.2. Detailed requirements expressed in RSL 123

8.3. Automating test generation .. 125

8.4. Instantiating concrete tests ... 126

8.5. Tool support ... 128

8.6. Conclusions .. 129

9. Mutation testing of ASP.NET MVC ... 133

9.1. Introduction .. 133

9.2. Related work .. 134

9.3. Mutation operators for ASP.NET MVC framework 134

9.4. Experimental evaluation of ASP.NET MVC mutation operators .. 139

9.5. Conclusions .. 140

10. SOA System Evolution Differential Evaluation 143

10.1. Introduction .. 143

10.2. Related work .. 143

10.3. Organization Context ... 144

10.4. Results .. 146

10.5. Conclusions .. 150

10.6. Further work ... 151

11. CoJaq: a hierarchical view on the Java bytecode formalised
in Coq ... 153

11.1. Introduction .. 153

11.2. Key Ideas.. 155

11.3. Related Work ... 161

11.4. Conclusions .. 162

12. Web-based Software Engineering Labs for Embedded and
Cyberphysical Systems ... 165

12.1. Introduction .. 165

12.2. FGCU’s web-based software engineering lab 173

12.3. Significance of remote labs .. 181

12.4. Conclusion ... 187

 Contents 9

13. From relatively isolated system to object approach – the story
of system development & modeling tools .. 193

13.1. Introduction .. 193

13.2. Relatively isolated systems .. 194

13.3. The object oriented model ... 198

13.4. Introduction to the development of the object approach 200

13.5. Unified Modeling Language .. 202

13.6. Conclusions .. 204

Authors and affiliations .. 207

Preface

One hundred and seventy years have passed since Taylor's Scientific
Memoirs published Ada Lovelace’s notes, including what is considered to be
the first program ever written. These days, when writing computer programs is
a developed industry, and software engineer – a renowned profession, a lot of
thought and effort is put into finding better ways of gathering software re-
quirements, designing, developing and testing software, as well as managing
development teams and teaching software engineering. This monograph pre-
sents the recent developments from researchers and practitioners specializing
in these areas.

In chapter one, Barbara Begier shows that teaching Scrum methodology
at the university encounters difficulties which can be eluded by restraining the
teaching only to selected elements of Scrum. She illustrates her proposal with
observations from her own work with students.

Chapter two is devoted to prevention of conceptual errors in system de-
sign. The authors analyze their experiences with graduate student team pro-
jects based on the domain-driven design approach and the Iconix methodology
and provide interesting suggestions.

The third chapter presents a model for capturing architectural decisions,
tailored for documenting the evolution of service-oriented systems. It not only
enables tracking architectural decisions made as the project progresses, but
also allows to document changes made to artefacts developed earlier.

Chapter four provides guidelines for the process of adaptation of open-
source software in form of an updated process framework for open-source
software acquisition and some remarks drawn from its application in two in-
ternational projects: BalticMuseums 2.0 and BalticMuseums 2.0 Plus.

The fifth chapter presents a feasibility study of applying the Feature
Model to develop tools for automatic eScience environment configuration
using a prototype implementation. It also describes an architecture of an exten-
sible framework automating various deployment and component installation
tasks based on the Feature Model.

12 Advances in Software Development

Chapter six describes PlanICS 2.0, an automatic web service composi-
tion system which separates between an abstract and a concrete planning
phase, provides flexibility, and allows to handle services that do not publish
their internal semantics.

The seventh chapter presents a new approach to the automatic genera-
tion of test cases, in which they are created on the base of business rules ex-
pressed in a structured natural language using a tool developed especially for
this purpose.

In chapter eight, the concept for the Requirements Driven Software
Testing (ReDSeT) tool is described. The tool allows for automatic integrated
test generation based on different types of requirements. It also allows to cre-
ate relations between tests by combining different types of requirements,

Chapter nine examines application of mutation testing to test cases eval-
uation for ASP. NET MVC-based web applications. Several new specific mu-
tation operators were proposed for this purpose. The presented experimental
evaluation results of the proposed approach are generally positive.

The tenth chapter contains an interesting case study of differential eval-
uation of Service Oriented Architecture implementation in an organization that
consist of two separate parts. The authors examine critical success factors of
SOA implementations and conclude with some general observations.

In chapter eleven, a design for a formalisation of the whole set of about
two hundred Java bytecode instructions is presented. The instructions are
grouped based on the way they operate on the runtime structures. The authors
aim to create a platform where both real programs could be verified and
metatheoretical properties of the language could be shown.

Chapter twelve presents the idea of web-based laboratories for teaching
software engineering, as implemented at Florida Gulf Coast University. This
topic gives opportunity to discuss issues related to the concepts of Lewis
Mumford’s megamachine, Marshall McLuhan’s medium as a message, and
Clayton Christensen’s disruptive technology.

The last chapter provides us with the history of development of system
modeling approaches, beginning with the concepts of Henryk Greniewski.

Jakub Swacha
Szczecin, September 2013

Chapter 1

Using Scrum or Scrumbut?

Developing the next generation of IT professionals requires paying more atten-

tion to modern methodologies of software development and training students in using

them. The increasing popularity of Scrum process bears a need to train students in

using this agile methodology at the faculty of computing. The aim of this chapter is to

show that teaching Scrum at the university encounters difficulties – only some ele-

ments of Scrum methodology are easy to be applied by students. The described real

life experience refers to students’ software projects implemented using Scrum process.

Various departures from Scrum, met in practice, are described. Detailed observations

and conclusions drawn during project classes and supervision of student’s dissertation

are presented.

1.1.Introduction

Scrum, a framework of the software process [5, 6], has gained wide
recognition and software companies make frequent use of this agile methodol-
ogy. This trend is also observed in Poznan (Poland) in the last two years. Thus
Scrum should be present in an educational process of future programmers and
project managers. Ken Schwaber and Jeff Sutherland, the authors of Scrum,
are also the co-authors of Agile Manifesto [3]. At the author’s faculty, Scrum
is initially presented in lectures of software engineering during the first-circle
studies. Aiming to master’s degree, students are taught software project man-
agement, referred at first to any IT project [4] and then especially to agile
methodologies [2, 5]. A need to balance agility and discipline is also empha-
sized [1]. In response to students’ expectations, the author has decided to su-
pervise project development using Scrum during project classes in the winter
semester of the academic year 2012/13. Students willingly started their pro-
jects trying to apply Scrum methodology. Unfortunately, this experience
turned out to be rather Scrumbut [7] in practice than Scrum. Not all principles

14 Advances in Software Development

and recommended practices of Scrum have been applied. Various aspects of
Scrum, applied or ignored by students, are described in this chapter.

The list of compatibilities of students’ conduct with recommendations
given by the Scrum authors has been developed and included into this chapter.
Paralelly, the list of divergences from Scrum rules and one more, containing
misinterpretations and problems with Scrum, have been developed, too. To
work out these lists, the author has made use of an opinion given by the pro-
fessional certified Scrum Master. The Scrum authors say that Scrum exists
only in its entirety [8]. It means that all principles, roles, events, and rules
should be met and respected. There is no Scrum if only some Scrum ideas are
followed. Thus the questions may be: Are the students able to work in Scrum?
How to teach and use Scrum methodology in students’ projects? The described
experience may help answering these questions and open a discussion about
how to teach students agile methodologies and how to practice software pro-
cess using Scrum. Conclusions are given in the last section.

1.2.About Scrum itself

The Scrum framework is briefly described below as a reference from the
further parts of this chapter to show many departures from Scrum rules made
by students. The content of this section is based on several documents pub-
lished by the Scrum authors, Ken Schwaber and Jeff Sutherland [5, 6, 8]. They
co-presented Scrum first at the OOPSLA conference in 1995 but Scrum has
evolved from this time. Scrum framework is known as a tool to manage effec-
tively software projects. It helps achieving two opposite, at the first sight,
aims: high quality of a product and at the same time high productivity in soft-
ware development. How is it possible to combine these usually conflicting
elements together?

The answer to this question consists of all elements and rules of a Scrum
process. Its crucial elements are: constant cooperation with a customer repre-
sented by a key user called Product Owner, iterative-incremental model of
software development, relatively short iterations called sprints (1−4 weeks),
requirement management using priorities assigned by a Product Owner to each
item in the Product Backlog, based on these priorities selection of require-

 Using Scrum or Scrumbut? 15

ments for each sprint (Sprint Backlog), frequent issues (Increments) making
possible a fast feedback from a customer’s side, work in small teams (3−9
persons), team’s autonomy during a sprint, possibility to stop a sprint or even a
whole project any time.

Scrum as a framework of a software process consists of roles, events, ar-
tifacts, and rules. The rules of Scrum bind together associated roles, required
and then developed artifacts, and events, starting from sprint planning. The
Scrum team consists of a Product Owner, development team, and a Scrum
Master. Every second student wants to play a role of a Scrum Master although
a person playing this role is expected to be a team servant instead of a supervi-
sor of a team. The success in Scrum results from: skills in team work, easy
(direct) communication, responsibility of team members, and their mutual
trust. It is not evident a priori if all team members share these abilities.

There is an assumption in Scrum process that a team is self-organizing
(nobody from outside tells each team member what she/he should do) and
cross-functional (each team member shows various skills necessary to create a
product increment). Testing is performed alternately by team members (not by
external testers). Everyone in team must understand and share the definition of
“Done” which refers to each item of the Sprint Backlog. In other words, team
members know what it means for work to be complete. Then a visible effect of
synergy seems to be very encouraging to apply this methodology.

As mentioned above, all work in Scrum is divided into sprints (itera-
tions). A sprint is a time-box having its own specified goal. It is a forecast by
the development team about what functionality will be in the next increment
and the work needed to deliver that functionality [8]. Each sprint contains
specified development work and several events taking place to meet all re-
quirements, including quality requirements, and this way to satisfy the Product
Owner. There are several meetings required in Scrum, including Sprint Plan-
ning, Daily Scrum (short stand-up meeting every day), Sprint Review, and
Sprint Retrospective. Burn-down charts (derived from Kanban method and
containing at the beginning all tasks to do during a given sprint) are used to
monitor the sprint progress. The term “sprint” emphasizes that the work will
be done as soon as possible (sprinters run faster than other racers).

Each sprint starts from the Sprint Planning Meeting intended to state
what will be done in this sprint and how will the chosen work get done? The

16 Advances in Software Development

Daily Scrum is a 15-minute meeting early morning and it takes place every
day. Team members are then expected to say: What has been accomplished
since the last meeting? What will be done before the next meeting? What ob-
stacles are in the way? Sometimes the sprint is cancelled before its planned
end if the Product Owner desires to do so. For example, if business or technol-
ogy conditions change. But it happens rarely. At the end of the sprint two
meetings take place: Sprint Review to present what has been done during that
sprint and to discuss the current content of the Product Backlog, and Sprint
Retrospective to inspect the work of the team and potentially to create a plan
of improvements to be enacted during the next sprint.

Scrum authors’ emphasize that every Scrum role, rule, and time box is
designed to provide the desired benefits and address predictable recurring
problems [7]. So applying Scrum means using all its recommended elements −
otherwise there are only so called Scrumbuts, like “We use Scrum but we can’t
build a piece of functionality in a month, so our sprints are 6 weeks long” [7].
For example, students say “We use Scrum, but we cannot often communicate
with our Product Owner (or meet every day) because each of us lives else-
where and we have to attend lectures”. Implementing only parts of Scrum is
possible but the result is not Scrum [8].

1.3.Introducing Scrum process − starting with artifacts concerning

requirements

Students of the second semester of courses leading to the master’s de-
gree have taken part in the described experiment. Several lectures about Scrum
development process have preceded project classes so students have already
heard about Scrum process framework, its sprints, roles, and produced arti-
facts. 52 students worked in 13 teams during the winter semester. There were
mostly four people in each team: 11 four-person team, one with three persons,
and another one with 5 students. Most of students were eager to practice
Scrum methodology because most of them work in software firms which, in
turn, try to apply the promising Scrum methodology. Project classes took place
every two weeks to present developed artifacts, progress of work and to plan

 Using Scrum or Scrumbut? 17

next sprint. Students have implemented their projects mainly in the meantime
between classes.

Furthermore, the author has been a mentor of two dissertations having
Scrum in their titles in the academic year 2012/13. The first one started in
March so it is too early for conclusions. Another one entitled “Using Scrum
methodology in a real software project” has already been finished. It required
a lot of mentor’s help − many conclusions presented in subsequent parts of this
chapter are concerned with this experience. Both dissertations refer to the real
software projects. Their authors and many other students imagine themselves
as future Scrum Masters.

Students have had freedom to decide who will work in one team and
what software application will be implemented (each team worked on different
subject). Each team pointed out its Scrum Master although nobody was suffi-
ciently experienced with Scrum methodology. The author has been an advisor,
supervisor, and a witness of work realized by students in Scrum. At first, a
subject and title of an application for each team were specified. Only three
teams had the true (real) Product Owner. But Product Owners coming from
academia did not know Scrum methodology sufficiently and did not under-
stand properly their own role in a software process. It was the reason that an
author has partially played also a role of the Product Owner. Sometimes a
team itself had to specify requirements in the recommended forms.

All developed documents were checked by the author. At the beginning
students wrote their initial Product Backlog in a form of a table, containing
expected program functions, features, and other non-functional requirements
for all sprints. Its each row describes one requirement and contains:

• identifier of a requirement (to refer to it during tests and Sprint Re-
view),

• a statement expressed in natural language (a statement expressing one
requirement),

• priority expressed by a number form the range <1, 20>.

The number of initial requirements placed in the Product Backlog by
each team and other details are presented in Table 1.1. Students have been
instructed that there are expected to specify about a dozen requirements as a
minimum. Initially some students formulated less than 12 initial requirements.
Even in the engineering thesis for three intended sprints there were only 7

18 Advances in Software Development

requirements at the very beginning (the engineering four-person team is
marked as Eng in Table 1.1). With the author’s help this number has been
doubled soon. Before start of the first sprint, there were 8 to 15 rows in each
Product Backlog, as shown in Table 1.1. Most of its content described func-
tional requirements. Some students wrote short gerund clauses in it instead of
full sentences expressed in natural language. The gerund clauses are less com-
prehensive for other people.

Table 1.1. Initial number of requirements in a Product Backlog, number of require-
ments selected for the first sprint, and number of sprint tasks

Team I1A I1B I1C I1D I1E I1F I1G I2A I2B I2C I2D I2E I2F Eng

Product

Backlog

12 8 12 12 13 11 12 15 13 16 10 12 8 14

First

Sprint

Backlog

3 9 3 16 4 4 6 5 9 6 5 4 2 9

Tasks to

do in

the first

sprint

21 10 7 18 13 11 11 7 34 26 12 11 2 24

In Scrum the Product Backlog is dynamic. It is never completed – it

may constantly change. Then general requirements were transformed into user
stories. First, each record in the Product Backlog has been expanded into sev-
eral sentences, and then to the most popular form (although not strictly re-
quired by the Scrum authors), like “As a <user type> I want to <do some ac-
tion> to <achieve desired results>” or “As a <role> I want <goal/desire> so
that <benefit>”. In several teams, the number of requirements in the Product
Backlog has been significantly increased already during this transformation
and became more numerous (ca 20−100%) than before. Priority from the range
<1, 20> was assigned to each requirement. Then the content of each Product
Backlog has been ordered decreasingly on a base of assigned priorities.

The following mistakes have been made by students in the above activi-
ties:

 Using Scrum or Scrumbut? 19

• There are few requirements at the beginning, not enough for 2−3
sprints.

• Requirements have no identifiers.
• Requirements are not expressed in statements of natural language (they

are gerund clauses).
• A sentence describing requirement in an initial form of a Product

Backlog is not simple but the compound one so it expresses more than
one requirement.

• Identifiers assigned to requirements are changed during development
process.

• There is too small range of priorities, like <1, 3>, for example.
• Priorities are wrongly assigned to requirements – their values do not

help selecting them properly for the first sprint.
• Requirements included in the Product Backlog are not ordered decreas-

ingly.

The listed above mistakes are not very serious. Their reason is a lack of
experience. Some fault is also at the side of Product Owners who have no ex-
perience with Scrum methodology or even any methodology. Furthermore,
software developers do not often consider the user’s point of view (they are
not aware of it). These critical remarks concern an application of any agile
methodology. The Scrum Guide contains no instructions concerning the rec-
ommended number and form of requirements, including their identifiers.
Scrum authors emphasize a need to express requirements clearly, to assign
priorities to them and then to list them on that basis in a decreasing order. Cor-
rectly specified higher ordered items of the Product Backlog are clearer and
more detailed than lower ordered ones [8]. In practice, the requirement must
be expressed clearly for anybody (customer and team members) so several
sentences, including suggestions concerning test designs, should be stated in
every case. Identifiers are helpful during testing and release of a software
product – a consumer has to be sure that all his/her requirements have been
met.

Then each team developed the Sprint Backlog as a subset of their Prod-
uct Backlog. Students formulated a goal of the sprint and tried to estimate an
effort/time needed to implement the selected requirements. For implementa-
tion in the first sprint, there were selected from ¼ of a total number up to al-

20 Advances in Software Development

most all requirements specified in the Product Backlog. One team selected
only 2 requirements (from 8 in the whole) for the first sprint. In the meantime,
the number of requirements recorded in the Product Backlog has been already
increased. That’s why, for example, in the case of I1D team, the number of
requirements selected for the first sprint is greater than the initial number of all
requirements.

Then the selected requirements have been decomposed into tasks to do
during the first sprint. At this point students tended to consider mainly soft-
ware construction and express only strictly programming tasks. They forgot to
include tasks of designing, testing, inspections, writing test scenarios, etc. At
last all work for the first sprint has been specified. Tasks had their own identi-
fiers related to requirements and sprint (each task identifier consisted of three
elements separated by dots: sprint number, requirement id, and task id). It is
not strictly required in the Scrum Guide but it is helpful during a sprint review
to summarize all results and to assess contribution of team members.

1.4.Monitoring sprint progress and its results

To monitor a sprint progress, expressed as a total work remaining to do,
the burn-down chart has been developed by a Scrum Master of each team. At
the beginning, the burn-down chart shows the work forecast (number of tasks
that should be performed in the time estimated for a given sprint), and then the
real time consumed by task performance. According to Scrum principles, the
development team tracks their total work during short daily meetings – it
should be enough to sum-up their efforts and monitor the progress. There were
several mistakes made in some developed charts. At first, no axis of a burn-
down chart has been described (and no other legend has been provided) – its y-
axis (ordinate) should describe tasks to be performed and its x-axis describes
days of sprints or days of whole software project (all sprints).

The most important Scrum artifact is an increment. Each development
team was obliged to show results of the sprint. The scenario of acceptance
tests has been developed by each team and then performed at the end of a giv-
en sprint. Such scenarios are not required in Scrum. They are typical rather for
the waterfall model than Scrum. But there was no other formal definition of

 Using Scrum or Scrumbut? 21

“Done” and no more stringent criteria for high quality of software product
were formulated. In most cases, the author played a role of a purchaser who
made technical acceptance of the first (and then next) increment.

One half of test scenarios had to be rewritten because of their improper
content. Some students show poor creativity in producing possible scenarios of
using their software product in practice as it should be during the test ac-
ceptance. The following remarks were made at this point:

• A title of a given scenario does not express/illustrate its content. So it
may be incomprehensible for a customer.

• Scenario has no identifier and no name at all.
• There is a lack of initial information describing a given scenario, like

references to requirements and context of test implementation.
• The word “user” is overused instead of naming a user role precisely,

like client, officer, pupil, clerk, etc. – students have problems how to
name these roles.

• Too general terms were used like data or information instead of teach-
er’s personal data or attributes of a book, for example.

• Some expressions are imprecise. For example, it is not specified direct-
ly if data come from the database or from a user in the given case.

• Expected results of a test are laconically worded, like results are dis-
played on a screen.

• Trivial unit tests are described instead of including sophisticated cases.
• Content of a scenario is too general, not referred especially to a tested

application so it may be applied to any software product.
• There are only few steps of a scenario; there are no combination of

several options required to obtain expected results so mostly only one
option or function is tested.

Despite the burn-down chart illustrating a progress in a given sprint,
each team prepared at its the end a burn-down chart which illustrated a fore-
cast for the whole software project (divided into 3 sprints) and the current im-
plementation of requirements (including increment of the given sprint).

Then two other Scrum events have been described − the Sprint Review
and the Sprint Retrospective. The following mistakes have been noticed in
reference to Sprint Review and Sprint Retrospective:

22 Advances in Software Development

• Not all requirements included in the Sprint Backlog were implemented
(mostly 2 requirements were left).

• Lack of communication in team resulted in using different identifiers
of the same requirement and/or task.

• It was no exact explanation which requirements/tasks were finished
completely.

• It was no explanation and/or justification why some requirements were
not met.

• Priorities were assigned improperly in the Product Backlog so the se-
lection of requirements for the first sprint was wrong.

• Some students did not see any difference between burn-down chart for
one sprint and for the whole software project.

• There was no precise distinction between the Sprint Review and a
Sprint Retrospective. The Sprint Retrospective was not intended to as-
sess the mode of work and possibilities of its improvement as it should
be.

Any document containing mistakes had to be improved. So there were
subsequent versions of elaborated documents. Each document had its title,
author, date of edition, version number, purpose, and addressee.

The modified Product Backlog was presented at the end of the sprint.
Modifications were modest – there were 2−3 new requirements added to pre-
vious content of the Product Backlog. Priorities assigned to requirements have
been often changed.

1.5.Conformity and observed incompatibilities with Scrum

Observations show that students (first of all weak students) tend to sim-
plify problems instead of solving them and also try to ignore and/or pass over
some Scrum events. So a problem of applying so called ScrumButs [7] appears
as mentioned in one of previous sections. People say, for example: We use
Scrum, but having a daily Scrum meeting every day is impossible in our case.
During their studies, some students are accustomed to defend somehow their
weak progress at work or a lack of required knowledge. Then they continue
this practice at work. Thus it seems to be important to gather and explain them

 Using Scrum or Scrumbut? 23

all departures from the Scrum process framework. The results presented below
are divided into three parts describing respectively: What was done correctly?
What was completely wrong in applying Scrum? What misinterpretations and
problems have occurred?

Activities undertaken correctly, it means performed in accordance
with Scrum:

• Whole development process is realized in sprints.
• Team size is small enough; there are 3−5 persons in it.
• One team member becomes the Scrum Master.
• A team has the Product Owner although he/she is not a person repre-

senting business. For example, the Product Owner is an academic
teacher responsible for another course.

• Meeting intended for sprint planning takes place at the beginning of
each sprint. It results in a Sprint Backlog.

• Sprint goal is specified at the meeting of a sprint planning.
• Requirements recorded in the Sprint Backlog are decomposed into

tasks.
• A forecast is made to estimate time (in hours or person-days) required

for each identified task.
• Sprint Review takes place at the end of each sprint.
• Burn-down chart shows a progress of work and work to do during each

sprint.
• Records concerning the time really consumed for implementation of

each task are made at the end of each sprint.
• Retrospective meeting takes place at the end of a sprint.
• The new release (issue) is ready at the end of each sprint.

Evident failures (undertaken activities diverge significantly from those
recommended and required in Scrum):

• Team work does not take place every day.
• Daily meetings do not take place every day (usually twice a week).
• One student nominates himself to be a Scrum Master although he/she

has no experience with Scrum.
• A team has no real Product Owner (then the lecturer plays this role in

several cases).

24 Advances in Software Development

• Scrum Master instead of the Product Owner makes transformation of
requirements into the most popular form in Scrum (As a <role> I want
<to do some action> so that <benefit>).

• Scrum Master should teach the product Owner to make the above
transformation but he didn’t because of the lack of knowledge and ex-
perience.

• Scrum Master is the only one who communicates (not frequently!)
with the Product Owner – in Scrum all team members are supposed to
communicate with him/her.

• Team members do not work at the same place so direct communication
is problematic.

• Sprint goal is not always placed on a table visible for all team mem-
bers. Student team does not work in one room so it doesn’t make sense
to place any inscription in room (other solution is to put such inscrip-
tion on a monitor screen of each team member).

• Scrum Master decomposes personally sprint requirements into tasks to
do.

• There is no exact definition of “Done” for the Scrum team to assess
when work on the product increment is complete.

• Daily meetings last longer than 15 minutes because other problems are
discussed during it.

• Product does not work correctly even at the end of the last sprint (in
some teams).

• Product Owner limited himself/herself to play a role insufficiently for
Scrum purposes and does not participate in Sprint Review and Sprint
Retrospective.

• There are breaks between sprints so the next sprint does not begin ex-
actly when the previous one is finished. Some work is done between
sprints.

• Retrospective meeting takes place before the Sprint Review (in some
cases).

• Product issues are delayed. A delay of the first sprint causes further de-
lays. Usually one member in a team causes a delay but then all team is
delayed with work.

 Using Scrum or Scrumbut? 25

Misinterpretations and other problems:

• Scrum Master tries to assign tasks to team members, so he/she plays
rather a role of a manager than a servant-leader for the Scrum team −
team should be self-organized (team members should select tasks to do
by themselves and then be responsible for them).

• A team is not cross-functional as it is expected in Scrum so tasks are
assigned to persons who are experienced or specialized in some de-
sired activities like graphics, for example.

• One sprint of a student project lasts longer than 1−4 weeks but there
are only several days or even hours of true work on it during that time.

• Product Owner does not understand his role – he/she adds no new re-
quirements during whole development process and specifies them in a
free (traditional) form but not as it is expected in Scrum. Then the
Product Backlog is not dynamic.

• Each requirement has no unique identifier – such identifiers are not
strictly required in Scrum but they are very useful in the case of a stu-
dent project. Otherwise it would be almost impossible to control re-
quirements, their implementation, and dynamic changes.

• Team members show their results and tests during daily meetings −
daily meetings in Scrum are intended to discuss what should be done
(tasks to do) not how it has been done already.

• The Scrum Master creates the burn-down chart on a piece of paper,
modifies it from time to time, and presents it to the teacher during pro-
ject classes. Burn-down chart should be modified every day of work
and be shown on a table accessible for all team members.

• Product Owner (the author of this chapter is the only exception in play-
ing that role) rarely participates in Scrum events; he/she does not track
the development process.

• Increment of a given sprint is not free of defects.
• Retrospective meeting takes place without participation of a Product

Owner − students have problems to meet him/her frequently.
• Product Owner does not specify his/her suggestions concerning test

scenarios – he/she is not obliged to do it but test cases are welcome in
user stories; otherwise students have problems how to implement test-
ing and to ensure quality of a product.

26 Advances in Software Development

• Tasks assigned to team members require unequal effort of work so
some people are more exploited than others.

• Product acceptance is planned at the end of the last sprint – final ac-
ceptance is typical for a waterfall model (also in students’ work).

• Students do not take enough care for software quality – they limit
software quality to meet main functional requirements and to ensure
small density of errors.

• Records concerning productivity of team members and a team as a
whole are made using a tool like Redmine, for example. Each Scrum
Master willingly makes Gantt charts to show project progress although
these charts are typical for traditional, task-level project management.
In Scrum, managers track requirements not tasks. But translating
Product Backlog to the Gantt report is acceptable also by the Scrum
authors – it does not require much effort and may be helpful in prac-
tice.

• Although some students try to hide their problems, several problems
were reported, like: too many tasks to do in one sprint, imprecise spec-
ification of requirements, communication problems in team, swapping
some files without others’ knowledge about it, incompatibility with an
applied design pattern, problems with code integration, etc.

Motivation of team members weakens when the time goes on. When all
Scrum rules are fully respected then team members are enough motivated to
do their work. Team may work in its own tempo, terms are met, and no special
motivation is needed. But it works so in the case of a professional firm. Stu-
dents have no financial motivation. Work goes better when their product is
produced for the real life purchaser also without any financial gratification.

1.6.Observations and conclusions

Real life experiences with Scrum at the technical university have been
described. Using Scrum, students have implemented their projects from the
very beginning to the end – such approach is not often practiced in their se-
mester projects. Students have learnt that applying Scrum does not mean only
to name iterations as sprints, a list of requirements as the Product Backlog, and

 Using Scrum or Scrumbut? 27

a team leader as the Scrum Master. The team work performed in the chosen
methodology is valuable itself. Students have learnt to keep everything visible
to all parties and to track progress referred to the specified requirements – in
Scrum software developers plan and then report just requirements.

Despite all failures, misinterpretations, and incompatibilities with
Scrum, listed in the previous section and known to all participants at the end of
semester, students have gained considerable experience in Scrum methodolo-
gy. They have become aware of Scrum itself and its rules including their re-
quired entirety to be applied. Many Scrum rules have been applied although
many haven’t. Partially it is a result of an organization of studies – students
have to share their attention and time between several subjects. Scrum authors
recommend the work of a whole team on one software project in one room,
every day during the whole week. Daily work and stand-up meetings are not
possible in the case of students. Some of them are able to communicate each
other using Skype, for example. Other difficulties with Scrum refer to stu-
dents’ attitude and skills. They have no habit to specify requirements precisely,
they do not practice daily cooperation with a customer, they do not realize
solid testing, etc., although all these elements are basic for any agile method-
ology.

The author was able to assess the developed artifacts but not to monitor
a real sprint progress and Scrum events like daily and other required meetings.
Students have trained writing artifacts and short documents required in Scrum.
Thus they have not only implemented the code of increments. A discussion on
how to apply Scrum correctly took place during project classes − these issues
have been superficially attractive for students.

Responsibilities of a Scrum Master require special attention [5]. He/she
is supposed to remove barriers between developers and a Product Owner and
sometimes to teach him/her how to express and change requirements dynami-
cally and to meet project objectives through Scrum. He/she also tries facilitat-
ing creativity and empowerment of team members. Scrum Master improves
productivity of the team by applying and improving engineering practices and
ensuring enough communication between software developers and the Product
Owner. All these require a lot of experience and are difficult for practitioners
even in software firms applying Scrum.

28 Advances in Software Development

Nowadays students are aware of an importance of applied methodology.
Many students work in software firms and participate in projects implemented
for customers from Germany, United Kingdom, and USA. In these countries at
least some customers are ready to cooperate with software developers. So stu-
dents are eager to train one of agile methodologies. Academic teachers know,
in turn, that software engineers should be able to find a job on the global job
market, not only a local one.

Some Scrum elements are easier to introduce and realize them than oth-
ers. Scrum exists only in its entirety. Implementing only some its elements is
not Scrum itself – just Scrumbuts appear this way. And it has happened in the
described cases. Scrum authors warn software developers against such practic-
es. Students should be aware of it. Project management applied in Scrum ranks
among so called radical management methods which extend its applications on
other disciplines. Scrum can be taught only empirically. At university, any
practical experience in this area is valuable.

Projects implemented at the university are still driven mostly by the tra-
ditional methodology based on a waterfall model – there are no real customers,
no software purchasers and users, then some artifacts are assessed, and the
final acceptance takes place at the end of a semester. An applied methodology
seems to be the minor problem − this is wrong in the author’s opinion. Usually
the only stated question is how to solve a given technical problem but not who
requires this solution and for what. Then no proper methodology is applied or
even no methodology at all. Several students told me that they dream to be
employed in a real firm where an agile methodology is applied instead of be-
ing forced to work in “yesterday” terms. Experience with Scrum may help
realizing it.

References

[1] Boehm B., Turner R.: Balancing Agility and Discipline, Addison-
Wesley, Boston 2004.

[2] Highsmith J.: Agile project Management, Addison-Wesley, Boston
2004.

 Using Scrum or Scrumbut? 29

[3] Manifesto for Agile Software Development, Agile Alliance,
http://agilemanifesto.org, 2001.

[4] Phillips J.: IT Project Management. On Track from Start to Finish
(Polish 3rd edition), Helion, Gliwice 2011.

[5] Schwaber K.: Agile Project Management with Scrum, Microsoft
Press, Redmond, 2004.

[6] Schwaber K., Sutherland J.: Software in 30 Days, John Wiley &
Sons, Hoboken NJ 2012.

[7] Schwaber K., ScrumButs and Modifying Scrum,
http://www.scrum.org/ScrumBut, accessed 25.03.2013.

[8] Sutherland J., Schwaber K.: The Scrum Guide. The Definitive Guide
to Scrum: The Rules of the Game, on-line at:
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scru
m_Guide.pdf, recently accessed 15.02.2013.

Chapter 2

Prevention of conceptual errors in the system

design

The authors analyzed their experience in the running graduate student team pro-

jects of small-scale information systems (IS) based on the domain-driven design ap-

proach and the Iconix methodology. The documented project failures clearly indicate

the need of an improvement of the conceptual layers of software design because con-

ceptual errors have significantly decreased the quality of the software designed and

have extended the duration of the project. The suggested organizational and methodo-

logical solution to this problem is a mandatory concept mapping of the interest area of

the project and a mandatory maintaining of a checklist that has specially been designed

for the detection of the selected categories of conceptual errors. Additionally, a rich

image of the general IS concept and a problem domain glossary are recommended.

The authors anticipate that the proposed set of tools will result in streamlining of the

educational design process.

2.1.Introduction

Modeling and analysis is one of the key steps in the manufacturing pro-
cess of information systems (IS) [1]. A properly carried out analytical process
allows one to successfully design and implement the code, it reduces problems
at the implementation stage and ensures the efficiency of the software pro-
duced. A thorough analysis of information systems is a key factor in the prod-
uct quality and, therefore, a key factor in the success of IT projects [1].

The complexity of modern computer systems that operate in a dynamic
environment requires a good understanding of a large number of complex is-
sues in a design team. For this reason, there is a number of ordered (standard)
software manufacturing processes (known as the software development pro-
cess) [2], such as the Rational Unified Process (RUP), the Open Unified Pro-

32 Advances in Software Development

cess and the Iconix Process1. In these processes, at the modeling and design
stages, the Unified Modeling Language (UML) is used that enables an accu-
rate description of the IS structure and its functionality.

However, despite the existence of such a precise and powerful tool as
the UML, designing of information systems remains a difficult task. Young
designers with limited experience face two major types of problems in the use
of UML in practice. The first problem is to master UML elements and rules so
as not to make any formal errors. For each software engineer, this is only a
temporary problem, which disappears after a short time of using the language,
despite its complexity. The second problem is more serious as its source is of a
behavioral-cognitive nature, which relates to the organization and control of
the complex cognitive and emotional activity of a designer [4].

A good design of the architecture and functionality of IS requires de-
signers to use precise concepts that describe the elements and processes of the
system, and requires them to understand the role of IS in the business process,
especially in tasks which are not intuitive for final users. What is even more
important for designers is also to possess an ability to take the users’ point of
view. For larger teams of designers, there exist specializations in this matter,
but the ability of precision conceptual planning is required of every designer,
regardless of his/her specialty. Technological support for designers can be
provided by validation of conceptual schema. There are a number of research
teams that are currently working on such validation methodologies [5]. An
example of a European team is a group of IS conceptual modeling at the Tech-
nical University of Catalonia-Barcelona2.

In the conceptual layer, the creation of strictly diagrams such as a do-
main model, a conceptual database model or a use case diagram [3] can cause
conceptual errors resulting in severe defects in the subsequent stages of the
design, in the implementation of IS, and in a serious reduction of the quality of
the final product [6]. Some industrial software development processes are iter-
ative, which helps to eliminate most of the errors in the subsequent phases of
an IS design. Note that in such cases, conceptual errors still cause a prolonga-
tion of the production process. In addition, other manufacturing processes,
which are useful for smaller projects (e.g. Iconix), do not possess an iterative

1 http://iconixprocess.com/
2 Conceptual Modeling of IS research group, http://guifre.lsi.upc.edu/

 Prevention of conceptual errors in the system design 33

nature. They are also often less formal: in these methods, even some serious
conceptual errors may escape one’s notice, resulting in a faulty software.

Educational projects deserve separate attention. Upgrading of computer
studies should result in the increasing role of specialized design classes [7].
The problem is that the specificity of the projects carried out under the plan of
study and a rigid frame of semester hours does not allow one to use an iterative
approach and forces de facto a manufacturing process that is similar to the
waterfall model. Significant time limitations and a small design team do not
allow real iterations, especially in single thesis projects. This situation high-
lights the role of a conceptual model validation in a didactic IS project because
the requirement for an advanced conceptual analysis increases the chance of
the success of a project (course credit) and leads to an increase in the quality of
the acquired knowledge and skills.

2.2. The research material, the idea of extending the instrumenta-

tion

The authors have been teaching advanced software engineering classes
for several years. Classes are conducted in accordance with a project method
which is similar to actual IT projects, and address issues related to the produc-
tion of selected systems at the level of a small business management system,
such as a car rental, a craft shop or a dispensary. Projects are carried out main-
ly in accordance with the Iconix process, due to its moderate formalization and
its average level of complexity of formal requirements, which young designers
can fulfill during one-semester classes. It is important to emphasize that the
project tasks were performed by graduate students, who already hold bache-
lor's degrees (in Poland, licentiate or engineer) and possess some initial expe-
rience in computer programming and software engineering (because of their
industrial practice and diploma projects).

Project documentation, accumulated over last five semesters, which de-
scribes those activities, allowed the authors to note a regular occurrence of
some conceptual problems in students’ projects. It was discovered, as a result
of the study [8], that these problems were caused by shallow modeling and
limited understanding of the problem being solved. In this research, the identi-

34 Advances in Software Development

fied types of conceptual errors were grouped according to their impact on the
project success.

Fig. 2.1. Roadmap of extended Iconix process. Source: own

These observations allowed us to suggest a conceptual error preventing
technique based on an extension of the project instrumentation. While remain-
ing in the Iconix manufacturing process, a designer should use additional ana-
lytical tools, which are well-known from the areas of knowledge engineering.

 Prevention of conceptual errors in the system design 35

In our opinion, the tools can be as follows: a conceptual map, which fits well
the scale and objective of the project, and a checklist designed to verify the
absence of some categories of conceptual errors in the project. As an addition-
al tool, we can recommend a rich picture of the whole IS and a glossary for the
problem domain. The authors’ proposal, therefore, is focused on a modifica-
tion and an extension of the Iconix design process for those items that are indi-
cated in Figure 2.1. It should be noted that architectural decisions are made
after the use of case modeling, starting from the robustness diagram.

2.3. Example of the use of conceptual maps in the IS project

One of the most effective error preventing techniques in student projects
turned out to be concept mapping [9], that had to be done before the actual
start of work on the IS project. In terms of software engineering, it may be said
that conceptual modeling of a problem should take place at the planning stage
of a project (in the strategic phase). The main task of the concept map (a kind
of semantic web) in this context is a "synchronization of the vocabulary" of all
the project participants. In our experience, the CmapTools software3, devel-
oped by The Institute for Human and Machine Cognition, proved to be a use-
ful and user-friendly tool for developing a concept map with students.

Figure 2.2 shows a sample map of concepts done in order to prepare the
project team to work on a particular IS. This map is set in the context of the
project goal, which provides the creation of a database web application sup-
porting auctions conducted over the Internet. This map is not a representation
of any "absolute knowledge" about the problem domain, but it is rather a look
at this domain agreed by the project participants. An ideal situation would be
to aim for encyclopedic representation of the problem, but in a real situation,
one can have satisfaction from some simplified mapping of issues. It is im-
portant that the map includes recorded ontological arrangements adopted by
the project participants.

The students were generally well familiar with the domain of the project
generally because of the high popularity of websites like allegro.pl and
ebay.com, but work on the map shown in Figure 2.2 presented for the young

3 The IHMC CmapTools program, http://cmap.ihmc.us/

36 Advances in Software Development

designers some very important features of auctions. For example, a lot of dis-
cussion was caused by the problem of bringing Offers, Prices and Goods into
association. The same team discussed a lot about whether Bidding concerns
"Auction Item" and whether during the auction one can use the "Market Price"
concept of the Goods. By working on this map, the team could quickly figure
out the problem situation and move on to specify the major processes that had
to be assisted by IS. The map also proved to be useful in any analysis of use
cases, and when the team was building the data model of the auction house.
The main positive result of using this map in the project proved to be a con-
sistent vocabulary, which can easily be seen in the documentation, as well in
the text-based UI design.

Fig. 2.2. Concept map for the Internet Auction House. Source: own

The domain dictionary was another effective technique to prevent errors
in student projects, in regard to our experience. Such a template-based diction-
ary, prepared by the team, can contain the same information about the compo-
nents of the problem domain and about their relationships in the form of a
structured text. This dictionary may even contain information, that would not
normally be included in a concept map, e.g.: restrictions, operating parameters,

 Prevention of conceptual errors in the system design 37

minimum requirements, etc. The dictionary, prepared in a tabular form, can be
much more informative and at the same time as readable as a map of concepts.

Table 2.1. Sample template of project dictionary

Concept Related to
the concepts

Parameters Description4

Auction Offer, Ten-
der

The Term,
Type

This is a public sale in which the buyer of
a thing is the person who offers the highest
amount.

Offer Auction,
Goods, Bid-
ding

Amount,
Time

A formal proposal for concluding the con-
tract, the one-time transaction in the con-
text of auctions, submitted by the potential
buyer.

Subject Bidding,
Goods, Pur-
chase

ID, Status Auction Participant who has specific privi-
leges in the system, which can start auc-
tions as a buyer, participate, or submit
offers.

Goods Auction,
Subject,
Offer

Description,
Value

Subject of the auction and potentially of
transactions, described in the IS.

2.4. Example of using a checklist

The main advantage of a checklist as a tool is its simplicity of use, re-
gardless of whether it is prepared in a traditional paper form or in the form of a
computer program. A precise checklist is condensed expert knowledge given
in an easily accessible form. The checklist will be very helpful for a correct-
ness verification of UML models, if it contains a specified and sufficiently
large number of possible "crisis" situations, which are not obvious from the
point of view of the modeling language rules.

Figure 2.3 shows an example of a use case diagram that should describe
the functionality of the Auction House. This diagram contains a number of
common conceptual mistakes. It was created by the students without the use of
a checklist. Some of errors from Fig. 2.3 can be easily overcome by using
checklist questions.

4 Based on http://oxforddictionaries.com/

38 Advances in Software Development

One can additionally note in the Diagram 3, the mistake of an incorrect
designation of the relationship direction, which replaces the cause with the
optional effect: the use cases of "Bid item" and "Buy item".

Fig. 2.3. Use case diagram for the Auction House, developed without an adoption of a
checklist (see Tab

Table 2.2 contains a fragment of our checklist used to detect defects in
the use cases diagrams without targeting a specific type of IS. The questions
included in the list (column no. 2, Question) are ranked in the ascending order
according to the level of a semantic difficulty from the designer's point of
view. The template, adopted by the authors for building the questions, is as
follows: being → action → object, which is similar to the order resulting from
a natural grammar that reflects the evolutionary cogniti

Advances in Software Development

One can additionally note in the Diagram 3, the mistake of an incorrect
designation of the relationship direction, which replaces the cause with the

ffect: the use cases of "Bid item" and "Buy item".

3. Use case diagram for the Auction House, developed without an adoption of a

checklist (see Table. 2.2). Source: own

2 contains a fragment of our checklist used to detect defects in
the use cases diagrams without targeting a specific type of IS. The questions
included in the list (column no. 2, Question) are ranked in the ascending order

tic difficulty from the designer's point of
view. The template, adopted by the authors for building the questions, is as

object, which is similar to the order resulting from
a natural grammar that reflects the evolutionary cognitive priority [10].

 Prevention of conceptual errors in the system design 39

Table 2.2. Some checklist questions that were verified during our studies

Nr Question Answer
1 Do specified

actors cover the
business model
of the project?

Yes (no errors associated with the lack of modeling of select-
ed categories of users).

2 Are all the use
cases unique?

Probably not. Cases “Browse Listings” and “Browse Prod-
ucts” should be the same, unless the Administrator needs
some additional powerful features when viewing a list of
items. However, the Guest and the Client, in every known
Auction House implementation, can browse the offer, which
means they can see the parameters of the items (goods) and
the conditions of sale. In most cases, one cannot browse the
items in an isolation from the offer.

3 Are the selected
objects related
to appropriate
actors and ac-
tions?

No. There are errors associated with ontology. The most im-
portant item in most cases is the auction, because it is a foun-
dation for the business model. But, in the diagram, there are
other two different objects: goods and items, which are basi-
cally represented as synonyms of an auction. However, in the
practice of auction houses, it is impossible to operate with
goods without manipulating the auctions; goods are here only
the components of auctions. Hence, you cannot search for
goods while not searching for auctions, but in order to create
an auction, you must add an item/product/goods. In this case,
an error is also related to the third point checklist.

4 Do use cases
that are acces-
sible to various
actors possess
the same flow?

Not applicable, there is no improper sharing of use cases.

5 Do specified
use cases cover
the necessary
functionality in
the established
business mod-
el?

Probably not. There are no cases that are complementary to
some of the existing ones, for example, there is no “Unlock
Account” for the existing “Block Account”. There is also a
deficiency of some use cases, preferred from a business point
of view, for example realizing adjudication of disputes, man-
aging of advertising, managing of personal auctions. Moreo-
ver, if we do model viewing and searching activities as two
separate use cases, the Administrator also should have the use
case of "Search Auctions".

6 Is the inher-
itance of use
cases and actors
justified?

Yes, there is no faulty inheritance of use cases, but the inher-
itance of actors is dubious. The customer should have the use
cases of "Search Goods" and "Browse Goods" (rather than
"Search Auctions" and "Browse Auctions"), but the use case
of "Register" should be blocked to him: this is not indicated
on the diagram.

40 Advances in Software Development

A negative answer to even a single question indicates the need to amend
the use case diagram. Using mentioned above
and thus correct the errors in the analyzed diagram
Table 2.2, there are described errors

2.5. Example of the use of a rich picture

An initialization of the IS project involves taking strategic decisions on
appropriate priorities and elaborating of the
beginning it is advisable to agree on the main concepts and an outline of the
system architecture that is accessible to all stakeholders. The authors propose
to capture a first look at the mechanisms of the future informat
ing the unconventional diagram shown in Figure

Fig. 2.4. Rich picture of Trade Agency. Source: [11].

Advances in Software Development

A negative answer to even a single question indicates the need to amend
mentioned above checklist, we can easily find,

analyzed diagram. In column 3 (Answer) of
errors found in the diagram shown in Figure 2.3.

Example of the use of a rich picture

An initialization of the IS project involves taking strategic decisions on
appropriate priorities and elaborating of the system conception. Thus, from the
beginning it is advisable to agree on the main concepts and an outline of the
system architecture that is accessible to all stakeholders. The authors propose
to capture a first look at the mechanisms of the future information system us-
ing the unconventional diagram shown in Figure 2.4.

4. Rich picture of Trade Agency. Source: [11].

 Prevention of conceptual errors in the system design 41

This diagram in fact visualizes data flows between the major modules of
the system and its environment. The arrows between the pictures are very es-
sential for the diagram because the main lines indicate data flows, and the in-
scriptions on them identify the transmitted documents or data sets. In terms of
software engineering, it is a contextual diagram. The advantage of the tech-
nique suggested is that the information perspective is suited to start discussions
with the client, sponsor, or shareholder using the same concepts. Knowledge
about the project issues, included in the perspective proposed, can serve as
inspiration of a further functional analysis of the system. This technique is a
part of the systems engineering methodology [1]. It provides a mechanism for
learning about complex topics or ill-defined problems by drawing their de-
tailed (“rich”) representation.

The situation represented in Figure 2.4 applies to the information system
of Trade Agency. This figure tells us about the planned services provided by
the system and about its users. The subtitles increase the informativity and in a
specific situation allow one to start building the data model of the system.

2.6. Conclusions

The practice of running graduate students’ team projects of small-scale
information systems (as part of software engineering teaching) points to the
perception of the existence of problems at the stage of the conceptual model-
ing of IS. Many of these problems can be solved with relatively uncomplicated
extensions of the analytical instrumentation.

As our practice has shown, using some extra conceptual perspective,
one can minimize this problem. In an academic environment, the following
tools have proved to be very useful: a conceptual map or a project domain
dictionary, a checklist for a conceptual verification of the functionality and
structure of the system proposed, and a rich picture of IS. A relatively easy use
of these tools has led to an observable improved quality of projects architec-
ture, to a more functional and useful UI, and to a compressed implementation
of information systems.

The proposed tools proved to be effective as an enhancement of the
Iconix process in the case of a cascade production of small-scale information

42 Advances in Software Development

systems. However, there are no contraindications to use this approach in the
iterative production: the team will not gain in terms of time in completing the
project, but it may gain in terms of the product quality by creating a better IS.

The authors of this chapter have had an opportunity to test their pro-
posals in an educational environment, in running graduate students’ team pro-
jects, and therefore among those who have software development knowledge,
but with very limited practical experience.

Bibliography

[1] Cecelja F., Manufacturing information and data systems: analysis,
design and practice, Penton Press, London, 2002.

[2] Kruchten P., The rational unified process: an introduction, Addison-
Wesley Longman Publishing Co., Inc., Boston 2003.

[3] Rosenberg D., Stephens M., Use case driven object modeling with
UML. Theory and practice, Apress 2007.

[4] Sternberg R.J., Cognitive psychology, Wadsworth Publishing, Bel-
mont, 2008.

[5] Tort A., Olivéa A., An approach to testing conceptual schemas, Data
& Knowledge Engineering, Vol. 69, Issue 6, June 2010, p. 598-618.

[6] Beynon-Davies P., Information systems development: an introduc-
tion to information systems engineering, Macmillan, London, 1998.

[7] Gabryel P., Polskie uczelnie europejskie, Rzeczpospolita, 7.10.2010.
[8] Statkiewicz M., Susłow W., Klasyfikacja błędów konceptualnych,

popełnianych przez studentów kierunku informatyka w trakcie mo-
delowania i projektowania systemów informatycznych, Zeszyty Stu-
dia i Materiały Polskiego Stowarzyszenia Zarządzania Wiedzą, nr.
36, 2010, s. 199-212.

[9] Węgrzyn A., Węgrzyn E., Technologia mappingu jako wsparcie na-
uczyciela w przekazie wiedzy, W: Uczelnia oparta na wiedzy/Red.
Gołębiowski T., Mierzejewska B., Fundacja Promocji i Akredytacji
Kierunków Ekonomicznych, Warszawa 2005, s. 239-252.

[10] Buss D. M., Evolutionary psychology: the new science of the mind,
MA: Omegatype Typography, Inc., Boston, 2008.

 Prevention of conceptual errors in the system design 43

[11] Jeż S., Susłow W., Developing the computerization concept of the
commercial agency by combining analytical perspectives, Studies
and Materials in Applied Computer Science, Vol. 3, No. 4, 2011, pp.
41-48.

Chapter 3

The decision making model for design of service -

oriented systems

The evolution of service-oriented systems is an intensive process of modifica-

tions, additions and removals of services and their compositions, driven by ever

changing business requirements. As such systems rarely reach a stable state and are

subject to many changes during their lifetime, documenting these changes and their

rationale can facilitate making further changes and extensions. In this chapter, we

present a model for capturing architectural decisions specially tailored for document-

ing the evolution of service-oriented systems. It follows an intuitive process of deci-

sion-making during the evolution of services and their compositions. It enables archi-

tectural decisions made during a single evolution step to be traced, and allows changes

made to artefacts developed in earlier evolution steps to be documented. Our model

includes the set of relations that allow for the auto-detection of previous decisions,

which could then be reused when implementing the change. Additionally, the set of

relations provides a mechanism for tracing changes of requirements and identifying

the impact of such changes. The model has been validated on a real world example.

3.1. Introduction

Modern organisations must perpetually modify their computer systems
in order to keep up with frequently changing or emerging business require-
ments. This makes a system’s modifiability and evolvability a primary concern
for the architecture stakeholders. Service-oriented architectures deliver a sys-
tem design paradigm that is particularly suitable for rapidly evolving systems.
They address the concern of modifiability and evolvability by enabling the
development of a new functionality by composing a new functionality from
the existing services. Such a development takes place mainly at an architectur-
al level.

46 Advances in Software Development

In order to develop further changes, it is necessary to comprehend a sys-
tem’s architecture in its current state. Architectural knowledge is necessary for
this comprehension. In a system that is subject to frequent changes, architec-
tural knowledge is created as subsequent modifications are developed. Models
and supporting tools are needed to facilitate capturing architectural knowledge
together with the development of changes (compare [2]).

The argument presented in this chapter is as follows:
• The evolution of a service-oriented system, similarly to software archi-

tecture [3], can be represented as a set of architectural decisions;
• Although some general models that support capturing architectural

knowledge and the decision-making process have already been devel-
oped (e.g., [1], [2]), a model specially tailored to service-oriented sys-
tems would assist architects more effectively than these general mod-
els, where it supports the intuitive process of decision-making during
the evolution of services and their compositions;

• The model postulated above has been presented in this chapter. It ena-
bles:
o capturing architectural decisions that have been made in consecu-

tive evolution steps – together with the models of the entities of
service-oriented systems, modified by these decisions (e.g. service
compositions are modelled in BPMN);

o defining relations between decisions that follow a cascading struc-
ture of changes made to the services and their compositions (i.e.
change to a service may force changes to services operation, which
in turn may force changes to service composition, which in turn
may require changes to services etc.;);

o defining relations that show the evolution of architectural decisions
and of the requirements that drive these decisions;

o tracing the decision process that takes place in a single evolution
step;

o tracing requirements, architectural decisions and the artefacts mod-
ified by them during consecutive evolution steps – provides a ver-
sioning mechanism for decisions and artefacts

o auto-detection of previous decisions that could be reused when im-
plementing changes.

 The decision making model for design of service - oriented systems... 47

Finally our concept has been verified on a real world example.
The rest of the chapter has been organised as follows: the evolution cap-

turing model is presented in section 2, its application has been illustrated on an
example in section 3, related work and contribution of this chapter is discussed
in section 4, and finally the outcomes and further research outlook is presented
in section 5.

3.2. Documenting the evolution of service-oriented systems

The Evolution Documentation Model consists of two basic components:
SOA System Model (section 3.2.1) – a set of models representing the

components of service-oriented systems (business processes, services, service
operations and their internal logic, service compositions) at various levels of
detail. This model is based on a conceptual model of the SOA system pro-
posed in [4].

Evolution Capturing Model (section 3.2.2) – documenting the changes
introduced by the evolution steps. Such changes may concern services, opera-
tions, service compositions and detailed models describing the implementation
of services. The evolution model provides a traceability mechanism for SOA
System Models and architectural decisions, a mechanism for the auto-
detection of reusable decisions, and also facilitates impact analysis and captur-
ing the architectural knowledge emerging during the development of changes

3.2.1. SOA System Model

Service-oriented systems implement one or more business processes,
whose activities are supported by suitable business services. These services, in
turn, comprise a number of operations. The latter may be implemented as a
service composition (composed of other service operations) or, in the case of
elementary services, as a piece of a source code. These dependencies have
been reflected in the SOA System Model (Fig. 3.1). The model comprises the
following entities:

The set of “Business Processes” supported by a service-oriented sys-
tem. These BPMN models (class Flow) abstract from the implementation de-

48 Advances in Software Development

tails such as service compositions, services definitions, interfaces, operations,
operation arguments, etc. Each business process is associated with a set of
tasks (class Task), which are also included in the workflow represented in
BPMN.

The set of models that represent services used to support business

processes. These models form a cascading, recursive structure as a model of a
service is connected with a number of operations, each of which can be either
an invocation of a basic (non-composed) service operation, or of a service
composition, etc. The set of models that represent services is represented by
the following classes:

• Service consists of a set of operations (represented as associations with
an operation). Therefore, service is a kind of container, or simply a la-
bel for the set of its operations.

• Operation is an entity in which computation actually takes place.
• Service Composition: is the model in BPMN that expresses the work-

flow composed of the invocations of operations (operations belonging
to various services – internal and provided by the external providers).
Service composition should be assigned to the service operation that
actually provides its input and output interface.

The set of low-level, detailed models (typically in UML) and executa-
ble code. Note that these models may concern only basic services developed
in-house, or in the possession of the system’s owner.

It is worth emphasising that the SOA System Model reflects the struc-
ture of real world, service-oriented systems, which is particularly noticeable in
the relation between services and their operations. We also assume that the
tasks can be one-to-one associated with service-operations, which implement
them in a service-oriented system. This imposes a certain rigour both on busi-
ness analysts and SOA system designers, which is needed to make business
even closer to IT.

 The decision making model for design of service - oriented systems... 49

Fig. 3.1. The conceptual model of service-oriented system

3.2.2. Evolution Capturing Model

The changes made to a service-oriented system are of a cascading struc-
ture, i.e. a change to a service may force changes to services operation. These,
in turn, may force changes to service composition, which may then require
changes to services etc. The Evolution Capturing Model (Fig. 3.2) documents
evolution as a set of “Evolution Steps”. Each Evolution Step is motivated by
an RFC document (Request for Change), which specifies the requested
change, describes its motivation, business and, if needed, technical context
(contains business process models). The step itself comprises a hierarchy of
architectural decisions, capturing the changes made to the models of the SOA
System Model. Such a cascading effect is reflected by the triggers relation.

Architectural decisions contain the following properties: input – artefact
before modification, outcome – artefact after modification, as well as artefact
alternatives considered during a change’s development (alternatives) and re-
quirements that should be met by the decision. A detailed description of the
evolution-capturing model with several types of relations between model enti-
ties and their formal definitions (not included in Fig. 3.2) has been presented in
the rest of this section. An example of the evolution capturing model is pre-
sented in Fig. 3.4.

50 Advances in Software Development

Fig. 3.2. The conceptual model of the Evolution Documentation Model

for a service-oriented system

Definition 1 – Entities of the Evolution Documentation Model:

Model – Let SOM be a set of operation models, let SRM be a set of ser-
vice models, let SCM be a set of service composition models and let DTM be
a set of detailed models. Model is the sum of: SOM, SRM, SCM and DTM:

� = ��� ∪ ��� ∪ ��� ∪ �	�
Rationale: Model is a set of all the models that evolve during the evolu-

tion of a service-oriented system.
Evolving Entity {Service Composition, Service or Service operation}

– Let EE be an Evolving Entity

 = {(
, �/	
, � ∈ ����
�}	where n is the
name of an evolving service, service composition or service operation and d a
description.

Evolution Step – Let ES be a set of evolution steps
� = {(
, �/	
, � ∈
����
�} where n is a name and d a description.

Request For Change – Let RFC be a set of RFCs ��� = {(
, �/	
, � ∈
����
�} where n is a name and d a description.

Architectural decision – Let AD be a set of architectural decisions
�� = {(
, �, �/	
, �, � ∈ ����
�} where n is a name, d a description and s
state = {being solved, resolved} (being solved – decision has been created, but
it has not been resolved yet, resolved - decision has not been resolved yet).

Architectural decision input – Let IN be a set of architectural decision
inputs �� = {(
, �,�/	
, � ∈ ����
�,� ∈ �} where n is a name, d is a de-
scription and m is the model before evolution.

 The decision making model for design of service - oriented systems... 51

Architectural decision alternatives – Let A be a set of architectural
decision alternatives � = {(
, �,�, {�}, {�}/	
, �, {�}, {�} ∈ ����
�,� ∈ �}
where n is a name, d is a description, {p} is the set of pros, {c} is the set of
cons and m is the model after evolution.

Outcome – Let O be a set of outcomes � = {(
, �,�, {�}, {�}/
	
, �, {�}, {�} ∈ ����
�,� ∈ �}	where n is a name, d is a description, {p} is
the set of pros, {c} is the set of cons and m is the model after evolution.

Requirement – Let R be a set of requirements � = {(
, �/	
, � ∈
����
�} where n is a name and d is a description. Defined requirements have
to be met by outcome of decision.

Definition 3 – Contains relations:

Let ≺ be a contains relation. Contains relation links architectural deci-
sions with their components: inputs, alternatives, outcomes and requirements.
Additionally it links decisions with evolution steps and evolution steps to the
evolving entity. The contains relation is expressed by grammar of UML.

Definition 4 – IsMotivatedBy relation:

Let isMotivatedBy ⊆ ES × RFC be an isMotivatedBy relation defined
between the evolution step and RFC. An isMotivatedBy relation is not reflex-
ive and not transitive.

Rationale: An isMotivatedBy relation describes a connection between an
evolution step and the RFCs that motivate it.

Definition 5 –Triggers relations:

Let �����3�� ⊆ �� × �� be a triggers relation defined between two
architectural decisions. If (��4	�����3��	��5), we also say that AD1 triggers
AD2 and AD2 is triggered by AD1.This relation shows the cascading of the
decision-making process and means that AD1 forces the need for making AD2.
A triggers relation is transitive: ��4	�����3��	��5 ∪	��5	�����3��	��7⟹
��4	�����3��	��7) and not inverse:
��4	�����3��	��5⟹¬(��5	�����3��	��4).

Rationale: A triggers relation shows the flow of a decision process – it
captures the cascading structure of a decision-making process.

52 Advances in Software Development

Definition 6: Service Composition Evolution Tree

The Service Composition Evolution Tree has been defined as follow:
: = (

 ∪
� ∪ �� ∪ �� ∪ � ∪ � ∪ �,≺, �����3��)

Definition 7 – isMet and isNotMet relation

Let	���3� ⊆ � × (� ∪ �) be a isMet relation defined between require-
ment and alternatives or outcomes and express that requirement is met by the
outcome or alternative. Let	���;��3� ⊆ � × (� ∪ �) be a isNotMet relation
defined between a requirement and alternatives or outcomes and express that
requirement is not met by the outcome or alternative. Neither of these relations
are reflexive and transitive.

Rationale: The isMet relation means that a requirement is met by an al-
ternative or outcome, otherwise a isNotMet relation should exist. The isMet
relation is default.

Definition 8 – Modifies relation:

A modifies relation is a relation between architectural decisions made in
subsequent evolution steps. It can be detected automatically if both decisions
modify the same model (i.e. If decision AD modifies model M and produces
model M’, and in the next evolution step decision AD’ modifies M’ and pro-
duces M” then: ��′	�;��=�3�	��). We say that AD’ modifies AD and AD is
modified by AD’. A modifies relation is not inverse: ��5	�;��=�3�	��4⟹
¬(��4	�;��=�3�	��5).

Rationale: The modifies relation shows the evolution of an architectural
decision–it represents the sequence of successive versions of the decision in
subsequent evolution steps.

Definition 9 – Overrides relation:

An overrides relation is a relation between requirements in subsequent
evolution steps. It can be defined between requirements connected to decisions
in the modifies relation, i.e. If decision AD2 modifies decision AD1, then re-
quirement Ri(AD2) can be in an overrides relation with Rj(AD1), then:
�>(��5);?3����3�	�@(��4). We can say that: Ri(AD2) overrides Rj(AD1) and

Rj(AD1) is overridden by Ri(AD2). An overrides relation is transitive: If
��7	�;��=�3�	��5 	∪ 	��5	�;��=�3�	��4 ∪	��7	�;��=�3�	��4 then

 The decision making model for design of service - oriented systems... 53

�>(��7)	;?3����3�	�@(��5) ∪ �@(��5)	;?3����3�	�A(��4) ⟹
�>(��7)	;?3����3�	�A(��4) and not inverse:
�>(��5)	;?3����3�	�@(��4) ⟹ ¬(�@(��4)	;?3����3�	�>(��5).

Rationale: The overrides relation represents the evolution of a require-
ment–it designates the road of successive versions of the requirement in sub-
sequent evolution steps.

Definition 10 – Context:

The context of an architectural decision ADn is a set of all outcomes and
requirements of decisions made before decision ADn and triggered it. Let
��B, ��C ∈ �� (AD – Architectural decision),	�4, … , �C ∈ � (O – Outcome),
�44, …�CE ∈ �		(R – Requirement), context is represented by:

�;
�3F�(��C) = G�C, �C4, … , �CEH ∪ I G�B, �B4, … ,
JKL	MN>OOPNQ	JKR

�BEH

Context(ADn) ≡ Ctx ([O1, R11, …, R1∞], … ,[On, Rn1, …, Rn∞])

Rationale: Context represents decision path which includes all outcomes

and requirements of decisions that have an impact on the considered decision
and itself.

Definition 11 –Evolution context:

The evolution context of an architectural decision ADn contains all the
outcomes and requirements connected to decisions that ADn modifies (being in
a modifies relation with ADn). Let ��B, ��C ∈ �� (AD – Architectural deci-
sion), �4, … , �C ∈ � (O – Outcome), �44, …�CE ∈ � (R – Requirement),
Evolution Context is represented by:

?;ST��;
�;
�3F�(��C) = G�C, �C4, … , �CEH ∪ I G�B, �B4, … ,
JKR	BUV>W>PQ	JKL

�BEH

EvolutionContext(ADn) ≡ EvCtx ([O1, R11, …, R1∞], … ,[On, Rn1, …,
Rn∞])

54 Advances in Software Development

Rationale: Evolution context represents history of the evolution of an
architectural decision and includes all the outcomes and requirements of pre-
vious versions of the decision and the decision itself.

Definition 12 – Current Context:

Let AD – Architectural Decision, O – Outcome, R – Requirement,
��C ∈ �� then:

�T��3
��;
�3F�(��C) = G�C, �C4, … , �CEH
Rationale: The CurrentContext of a decision represents the outcome and

the set of requirements connected to it.

Definition 13 – IsStronglyCompatibleWith relation:

Let AD – Architectural Decision, A – Alternative, O – Outcome, R –
Requirement, ��B, ��C ∈ ��,	��C	�;��=�3�	��B, ��B 	≺ 	�B, ��B 	≺
	�B>, ∀>∈ℕ		�B���3�	�B>

and �T��3
��;
�3F�(��B) = G�B, �B4, … , �B>H where � ∈ ℕ then:
G�C4, … , �C>H ≡ �T��3
��;
�3F�(��B)\�B ⟹�B	�����;
�S\�;��]��^S3_��ℎ	��C

Rationale: The isStronglyCompatibleWith relation means that the previ-
ous version of the decision could be reused, and all the requirements of the
considered decision and its previous version must be exactly the same.

Definition 14 – IsCompatibleWith relation:

Let AD – Architectural Decision, A – Alternative, O – Outcome, R –
Requirement, ��C, ��B ∈ ��, ��C	�;��=�3�	��B, ��B 	≺ 	�B,	��B 	≺
	�B> where � ∈ ℕ and ∀>∈ℕ		�B���3�	�B> then:

∃(�CA	;?3����3�	�Bb 	cℎ3�3	d, S	 ⋜ �)
∧ ¬g¬(�CA	;?3����3�	�Bb) ∨ ¬(�CA 	≡ 	�Bb)i
⟹ �B	���;��]��^S3_��ℎ	��C

Rationale: The IsCompatibleWith relation means that the previous ver-
sion of the decision is eligible for reuse, and at least one requirement has to be
overridden, but not identical. The architect has to verify whether the overrid-
den requirement is met by the considered decision. If all the requirements are
met, the decision could be reused.

 The decision making model for design of service - oriented systems... 55

Definition 15 – IsIncompatibleWith relation:

Let AD – Architectural Decision, A – Alternative, O – Outcome, R –
Requirement, ��C, ��B ∈ ��, ��C	�;��=�3�	��B, and ��B 	≺ 	�B then:
¬(�B	�����;
�S\�;��]��^S3_��ℎ	��C) ∧ ¬(�B	���;��]��^S3_��ℎ	��C)

⟹ �B	���
�;��]��^S3_��ℎ	��C
Rationale: The isIncompatibleWith relation means that the previous ver-

sion of a decision being considered cannot be reused.

3.2.3. Modeling Methodology

The Evolution Capturing Model is created as follows: the decision-
making process is captured as a hierarchy of architectural decisions; this struc-
ture is reflected by the “triggers” relation (see def. 5). The hierarchical deci-
sion-making is summarised by the context of a decision (see def. 10) that facil-
itates making further decisions.

The single evolution step could contain a number of decisions and con-
sequently a number of hierarchies built out of them. The RFC (or RFCs) moti-
vates each evolution step (see def. 4).

An architectural decision evolves when its context is changed. This may
be caused by removing a change or adding requirements related to that deci-
sion. These changes are usually motivated by RFCs (new business require-
ments). The evolution of architectural decisions is represented by the “modi-
fies” relation (see def. 8) in our model. In turn, changes in requirements are
represented by the “overrides” relation (see def. 9). Finally, the history of the
evolution of a decision is captured as a evolution context (see def. 11).

A decision can be changed many times. It is very probable that the con-
text and requirements of the decision could be similar or even identical in var-
ious evolution steps. Our model allows such situations to be detected, which
can result in the decision being reused (see. see def. 13, 14, 15).

3.3.Example

Our approach has been illustrated using the example of the evolution of
service composition. This composition describes the structure of service de-

56 Advances in Software Development

veloped for the automation of internet payments. The architecture of this com-
position has been shown in Fig. 3.3(a).

Fig. 3.3. The architecture of “internet payment” service composition: a) before evolu-
tion; b) after the first evolution step (added entities have been shown inside the red

frame).

We consider three evolution steps in our example. In the first evolution
step, “internet payment” service composition has to be extended by support for
instant wire transfers. In the second evolution step, the performance require-
ment to handle 100 concurrent users has been increased to 200 users, and the
architect decided that all the service operations for payment making have to
support 200 transactions per second. In the third evolution step, the perform-
ance requirement to handle 200 concurrent users has been limited to 50 users
(the number of active users has been limited and the use of high performance
services has been very expensive). The architect decided that the number of
supported transactions in case of all of the service operations for payment
making have been limited to 50.

The service composition of “internet payment” has been modified only
in the case of the first evolution step and has been illustrated in Fig. 3.3(b).

A model representing the evolution of the “internet payment” service
composition is presented in Fig. 3.4.

 The decision making model for design of service - oriented systems... 57

Fig. 3.4. The evolution documentation model for “Internet payment”.

58 Advances in Software Development

The structure of decision-making of three evolution steps for our exam-
ple has been presented in Fig. 3.4. We can observe that its hierarchical struc-
ture is reflected by the triggers relation. This allows for tracing the decision
making-process, which is captured as the context, e.g. context for AD4 –
“Selection of ‘inst. Wire Transfer’ Service Operation” looks as follows (com-
pare Fig. 3.4): Context (AD4) ≡ Ctx ([SC1’, R1],[SO1’, R2], [SC2’],[SO2,
R3])

Having more than one captured evolution step, we can observe the evo-
lution of architectural decisions and their requirements, which is reflected by
the modifies and overrides relations. The evolution of them is captured as evo-
lution context, and allows for their evolution to be traced. An example of evo-
lution context for AD12 – “Change of ‘inst. Wire Transfer’ Service Operation”
looks like the follows (compare Fig. 3.4):

EvolutionContext (AD4) ≡EvCtx ([SO2, R3],[SO2’, R5], [SC2’’, R7])
Our model provides the mechanism for detecting reusable decisions. Let

consider decision AD4 –“Selection of ‘inst. Wire Transfer’ Service Operation”
and its modifications: AD7 and AD12 – “Change of ‘inst. Wire Transfer’ Ser-
vice Operation” (compare Fig. 3.4 and section 3.2.3):

��7	�;��=�3�	��4	 ∧ ��12	�;��=�3�	��7
AD4 had to meet only one requirement R3 – “100 transactions per sec-

ond have to be supported”, the modification of AD4 was forced by a change of
this requirement to 200 transactions per second (by requirement R5), and then
in the third evolution step was reduced in to 50 transactions per second (by
requirement R7):

�5	;?3����3�	�3	 ∧ �7	;?3����3�	�5
Therefore using definition 15 (see section 3.2.2) we can conclude that

outcome of AD4 is eligible for reuse as an outcome of AD12, and if
�JK45���3�	�3	�ℎ3
 :

�JKp	���;��]��^S3_��ℎ	��12
It means that �JKp can be used as an outcome of ��12 and that the sub-

tree of AD4 can be used as a sub-tree of AD12 (see Fig. 3.4).
Decisions that could be reused as an outcome of AD12 are detected au-

tomatically; nevertheless, compliance with the requirements has to be verified
manually. For example, if AD4 would be replaced with AD7, then AD4 will
be incompatible with AD12 and could not be reused as an outcome of AD12.

 The decision making model for design of service - oriented systems... 59

Only in the case of an isStronglyCompatibleWith relation is the detection of
reusable decisions done automatically.

3.4.Related Work and Discussion

The evolution of service-oriented systems can be documented as sets of
architectural decisions, changed or newly made in order to design the required
changes.

Textual approaches to document architectural decisions do not support
evolution or only document chosen properties describing evolution [5], [6]. A
similar situation is in the case of approaches based on relations between deci-
sions [6], [7]. These limitations have already been observed and presented by
the authors of [8]. Moreover, they made their own approach based on two
types of attributes: annotated decisions to record the history and the status of a
decision at a given time; and recorded relationships between design decisions
and between design decisions and artefacts. In [11] authors proposed a meta-
model for the decision model including additional attributes to manage the
evolution of architecture design decisions. The most advanced approaches,
such as [1], [2], are based on a diagrammatic representation of ADs. The mod-
el described in [1] includes the classification of ADs as defined by architect
topic groups, four refinement levels [1], a set of relations between ADs and
their components and decision-making models. However, this model is de-
signed more for supporting decision-making during the construction of SOA
systems.

Another diagrammatic approach is MAD 2.0 [2], which has been devel-
oped by our team. MAD 2.0 has been designed to support architect practition-
ers working on system evolution. It does not impose any predefined classifica-
tion or hierarchy of architectural decisions and assumes a limited number of
kinds of relations between architectural decisions. The extended version of
MAD 2.0, including a definition of the context of a decision, has been present-
ed in [10].

In [9], the authors propose documentation framework for ADs based on
four viewpoints organising and categorising information on architectural deci-
sions. The evolution of architectural decisions is represented by the Decision

60 Advances in Software Development

Chronology viewpoint representing all the versions of every architectural deci-
sion.

The goal of our research was to develop models specialised for captur-
ing the evolution of services and their compositions as a set of architectural
decisions. Our model documents evolution as a set of evolution steps, each of
these steps includes hierarchical structures of ADs reflecting the intuitive pro-
cess of decision-making during the evolution of services and service composi-
tion. Documenting evolution steps and evolution of ADs is not possible in the
case of MAD 2.0 [2] and the model presented in [1]. Moreover, our approach
documents the evolution of the modelling artefacts (e.g. service compositions
are captured as BPMN models), i.e. artefacts are changed as a result of archi-
tectural decisions. Linking architectural decisions with the artefacts that have
been modified by them facilitates access and a comprehension of architectural
knowledge and its reuse.

Detecting previous versions of architectural decisions that could be re-
used in a current evolution step, and tracing changes in architectural decisions
and of the requirements related to them are new features. Reusing a previous
version of the decision results in reusing all of the sub-decisions. A definition
of requirements exists in MAD 2.0, but documenting and tracing requirements
is not supported.

Our model is compatible with the viewpoints set out in [9]:
• “Decision Detail Viewpoint” is represented by architectural decisions

and properties assigned to them, such as: alternatives, outcomes, in-
puts and requirements;

• “Decision Relationship Viewpoint” is represented by the hierarchical
structure of architectural decisions, which is designated by the triggers
relation;

• “Decision Stakeholder Involvement Viewpoint” – in the context of our
model, the decision maker is understood as the software architect;

• “Decision Chronological Viewpoint” is represented by the modifies re-
lation, which designates subsequent versions of architectural deci-
sions;

 The decision making model for design of service - oriented systems... 61

3.5.Summary and Outlook

A novel model has been proposed for documenting the evolution of ser-
vices and their composition based on capturing architectural decisions. Our
approach includes a set of formally defined relations, context and evolution
context, and provides the following features: mechanisms for tracing the evo-
lution of architectural decisions; requirements and modified artefacts in subse-
quent evolution steps; tracing the decision-making process for a single evolu-
tion step; versioning evolved artefacts and mechanisms for auto-detecting pre-
vious versions of architectural decisions that could be reused. The concept has
been illustrated on a real world example. The approach that has been proposed
in this chapter will be included into the evolution methodology for service-
oriented systems developed by our team. Therefore, the research outlook in-
cludes:

• The development and refinement of formal definitions and integrity
constraints of the model;

• The development of a software tool supporting the model;
• Carrying out further and more extensive validation.

This work was sponsored by the Polish Ministry of Science and Higher

Education under grant number 5321/B/T02/2010/39.

Bibliography

[1] Zimmermanna O., Koehlera J., Leymannb F., Polleya R., Schustera
N.: Managing architectural decision models with dependency rela-
tions, integrity constraints, and production rules, Journal of Systems
and Software, vol. 82, No. 8, pp. 1249-1267, 2009

[2] Zalewski A., Kijas S., D. Sokołowska.: Capturing Architecture Evo-
lution with Maps of Architectural Decisions 2.0, ECSA 2011, Essen,
Germany, Lecture Notes in Computer Science, vol. 6903, pp. 83-96,
2011.

[3] Bosch J., Jansen A.: Software Architecture as a Set of Architectural
Design Decisions, 5thWorking IEEE/IFIP Conference on Software

62 Advances in Software Development

Architecture (WICSA’05), pp. 109-120. IEEE Computer Society,
2005.

[4] Cardellini V., Casalicchio E., Grassi V., Iannucci S., Lo Presti F. and
Mirandola R.: MOSES: A Framework for QoS Driven Runtime Ad-
aptation of Service-Oriented Systems, IEEE Transactions on soft-
ware engineering, vol. 38, No. 5, Sep/Oct 2012.

[5] Tyree J., Akerman A.: Architecture Decisions: Demystifying Archi-
tecture, IEEE Software, vol. 22, No 2, pp. 19-27, 2005.

[6] Kruchten P., Lago P., van Vliet H.T.: Building up and Reasoning
about Architectural Knowledge, QoSA2006, Springer-Verlag LNCS
4214, pp. 43-58, 2006.

[7] Wang K. Sherdil, Madhavji N.H.: ACCA: An Architecture-centric
Concern Analysis Method, 5th IEEE/IFIP Working Conference on
Software Architecture, 2005.

[8] Capilla R., Nava F., Tang A.: Attributes for Characterizing the Evo-
lution of Architectural Design Decisions, Third International IEEE
Workshop on Computing & Processing, pp. 15 – 22, 2007.

[9] van Heescha U., Avgerioua P., Hilliard R.: A documentation frame-
work for architecture decisions, The Journal of Systems and Soft-
ware, vol. 85 pp. 795–820, 2012

[10] Szlenk M., Zalewski A., Kijas S.: Modelling architectural decisions
under changing requirements, Proceedings of the Joint 10th Working
Conference on Software Architecture & 6th European Conference on
Software Architecture, pp. 211-214. IEEE Computer Society, 2012

[11] Capilla R., Nava F., Dueñas J.C.: Modeling and Documenting the
Evolution of Architectural Design Decisions, Proceedings of the 2nd
Workshop on Sharing and Reusing Architectural Knowledge, ICSE
Workshops, IEEE DL, 2007.

Chapter 4

Managing the adaptation of open-source software:

the examples of BalticMuseums 2.0 and

BalticMuseums 2.0 Plus

The acquisition of open-source software often includes a non-trivial adaptation

of existing solutions. In this chapter we would like to provide some suggestions on

how the process of adaptation should be managed based on our observations from

development of two international projects: BalticMuseums 2.0 and BalticMuseums 2.0

Plus. We discuss an updated version of our framework for open-source software ac-

quisition that gives due focus to the process of software adaptation and relate how this

approach proved in real-world conditions during the development of the two afore-

mentioned projects.

4.1.Introduction

With the growing popularity of open-source software [12, p. 895], and a
variety of solutions available for many typical purposes, it becomes increas-
ingly important to devise schemes that would provide guidelines for selection
of software and improve efficiency of the OSS acquisition process.

What makes the issue complicated, is that often ready-made open-
source solutions do not provide the exact functionalities the users require. As a
result, some level of adaptation is needed in order to make the users satisfied.

This chapter is devoted to the problem of managing OSS acquisition
when adaptation phase is expected. We propose an updated version of our own
framework that provides guidelines on how to combine the adaptation with the
other stages of acquisition, and how to perform them taking the adaptation into
consideration. We describe the framework in the context of BalticMuseums
2.0 and BalticMuseums 2.0 Plus (later referred to as the “BM projects”), two
international projects whose realization led to development of the framework,
and provided examples of its use.

64 Advances in Software Development

This chapter is organized as follows: we start with a short description of
the BM projects, and then explain why it endorsed OSS solutions. The central
section of this chapter describes in detail an updated version of the FEChADO
framework [19]. Experiences from applying the framework within the subse-
quent BM projects are then described. Finally, conclusions are drawn.

4.2.BalticMuseums 2.0 and BalticMuseums 2.0 Plus projects

BalticMuseums 2.0 (“Joint development of cross-border information
products for South Baltic Oceanographic Museums”) and BalticMuseums 2.0
Plus (“Implementation of eGuides with cross-border shared content for South
Baltic Oceanographic Museums”) are international projects realized within the
South Baltic Cross-border Co-operation Programme 2007-2013, and part-
financed from the European Regional Development Fund [1].

The main objective of the BalticMuseums 2.0 project is the promotion
and effective use of the natural heritage stored in the oceanographic museums
by means of cross-border tourism information tools, in order to increase their
attractiveness and competitiveness, especially for international tourists. The
first among the detailed aims of the project is the development of a multilin-
gual online platform, which enables a common presentation of tourist infor-
mation by the museums – participants of the project [20, pp. 237-238].

The main objective of the BalticMuseums 2.0 Plus project is to develop
multilingual content describing exhibits of the museums – partners of the pro-
ject, and make it available for the tourists via multimedia eGuides. The first
among the detailed aims of the project is the development of an effective con-
tent management system for storing and sharing various eGuide content [21].

The two projects are realized by an international consortium consisting
of two scientific institutions – The University of Applied Sciences in Stralsund
and the University of Szczecin, and four oceanographic museums – the Ger-
man Oceanographic Museum in Stralsund, Gdynia Aquarium, Lithuanian Sea
Museum in Klaipeda and the Museum of the World Ocean in Kaliningrad.

 Managing the adaptation of open-source software... 65

4.3.Reasons for using open-source software

Both BalticMuseums 2.0 and BalticMuseums 2.0 Plus projects contain
significant components which require obtaining software suitable for specific
needs. The use of open-source software was not imposed on the project con-
sortium by the rules of the South Baltic program or any other institution, but it
was assumed by all the consortium members as one of the core characteristics
of the accepted approach since the very beginning of the first of the projects.
There were various reasons for using open-source rather than proprietary soft-
ware in BM projects. We can classify them in two dimensions: according to
the time perspective (short or long-term), and according to the aspect (organi-
zational, technological, and financial).

The short-term reasons pertain to the period of project development and
the ability of attaining the appointed goals within planned time and budget.
The long-term reasons refer to possible consequences after finalization of the
projects, including long-term sustaining of the projects’ results. The ad-
vantages expected by the BM projects partners from using open-source soft-
ware in relation to different aspects are given in Table 4.1.

Table 4.1. The advantages expected from using open-source software.

Source: own elaboration.

Area Advantages
Short-term

Technological High level of maturity: software developed for years
High level of security: many testers involved, quick updates for
identified weaknesses

Organizational Active developers’ and users’ communities, available solutions
for known problems

Financial No license fees
Long-term

Technological Well-documented interfaces: easier combination with future
systems

Organizational Long-term sustainability: high chance that software will be up-
dated
No dependence on specific software supplier in case of future
modifications

Financial No paid upgrades needed

66 Advances in Software Development

4.4.Methodology for open-source software adaptation

One of the principal advantages of open-source software is the availabil-
ity of the source code and the right to modify it [8]. This right needs not be
used if the obtained software fully meets the specified requirements. However,
if any of the main requirements is not met, it becomes very useful, as it allows
to modify the software so that it meets the missing requirements.

As open source software adaptation is a repeatable process, a framework
can be defined and then applied to support its efficient execution. Quite sur-
prisingly, even though there is a number of formalized approaches to the prob-
lem of selecting open source software (see Table 4.2 for examples), none of
them addresses exactly the kind of problem that the managers of BM projects,
among others, met: to acquire the most appropriate open-source solution con-
sidering it will still have to be adapted.

Although among 20 different approaches for open-source software eval-
uation listed by K.-J. Stol and M. A. Babar [17, pp. 390-391], there are at least
two ([6],[10]) that take software developers perspective, they address the situa-
tion of building a new software system using open-source components rather
than adapting an existing open-source software system for specific purposes.

Hence there was a number of open-source software systems acquired in
the BM projects, most of which required adaptation (see Tables 4.3 and 4.4
further on), such framework developed naturally. It was formed and refined on
the experiences of the BalticMuseums 2.0 project and applied in the
BalticMuseums 2.0 Plus project.

We call it FEChADO, which is an acronym of the six steps of the pro-
posed procedure for open-source software acquisition and adaptation [19]:

1. Find available solutions,
2. Evaluate solutions from the list,
3. Choose the most appropriate solution,
4. Adapt the solution,
5. Develop new modules,
6. Obtain users’ feedback.

The respective stages will be described in the subsections to follow.
Note that the description below may differ in details with the original presenta-

 Managing the adaptation of open-source software... 67

tion of the framework, as it contains later improvements; it may therefore be
referred to as FEChADO 1.1, versus 1.0 presented in [19].

Table 4.2. Methods for selection of open source software

Method Stages
QSOS by Atos Origin [11] 1. Define evaluation templates

2. Evaluate open source solutions
3. Qualify specific usage contexts
4. Select most relevant solutions

Context-Dependent Evalua-
tion Methodology by M.
Cabano, C. Monti, and G.
Piancastelli [5]

1. Context analysis, which defines the necessities
and requirements

2. Preliminary selection, which addresses the most
critical metrics

3. Filtered selection, which estimates the remain-
ing products by complete set of metrics

Open source software eval-
uation process by D. A.
Wheeler [22]

1. Identify candidates
2. Read existing reviews
3. Compare the leading programs’ attributes to the

needs
4. Analyze the top candidates in more depth

Software Assessment Phas-
es according to Business
Reading Rating Model [4]

1. Quick assessment filter
2. Target usage assessment
3. Data collection & processing
4. Data translation

Evaluation through Proto-
typing by R. Carbon et al.
[6]

1. Initial requirements analysis
2. OSS candidate selection
3. Iteration planning
4. Iterative prototype development
5. Final evaluation

Source: own elaboration.

4.4.1. Finding available solutions

The first stage consists of two phases: (1) the requirements have to be
specified; (2) available solutions that supposedly match these requirements are
listed. The initial list of suggested requirements may be based on characteris-
tics of known software similar to that to be obtained. Regardless of whether

68 Advances in Software Development

there are examples of similar software, a brainstorming session involving both
designers and representative users can be held to obtain the list.

The suggested requirements are then evaluated by a larger number of
end-users, who can also propose new requirements at this stage. Either a CAPI
(computer assisted personal interview) [2, pp. 136-139] or a CASI (computer-
assisted self-interview) [14] technique of survey is proposed for this task, with
the latter being faster, and the former allowing to obtain extra information and
avoid misunderstandings.

The results of questionnaires are then analyzed in order to produce a list
of requirements arranged in three groups: (a) core requirements (must be met),
(b) additional requirements (should be met), (c) special requirements (some
end-users believe they should be met). This list is once more presented to the
end-users for correction and, possibly, re-evaluation.

Having obtained the list of requirements, we can proceed to the next
phase: the search for candidate solutions that are supposed to match the re-
quirements. The search should start from open-source project portals, such as
sourceforge.net and freecode.com, and web search engines. Many search
phrases should be examined, as different words may be used to describe
equivalent functionalities.

The titles of software found first may also be used as search phrases in
order to find competing solutions, or even reviews and feature comparison
tables that may be very helpful also in the evaluation stage.

The search is discontinued after no more matching solutions can be
found or the number of the candidate solutions exceeds an assumed threshold.

4.4.2. Evaluating found solutions

There are four phases in the evaluation stage: (1) Specifying evaluation
criteria; (2) Preliminary evaluation; (3) Main evaluation; (4) In-depth evalua-
tion.

The evaluation criteria are specified by assigning measurable fulfillment
levels to the respective requirements. Only one fulfillment level must be de-
fined for each criterion: acceptable; no solution failing to achieve this level
should be chosen over one that achieves it. Additional levels can be defined, so

 Managing the adaptation of open-source software... 69

that solutions that pass the acceptable level could be compared between each
other. Their number may depend on requirements of the method used in the
main evaluation phase.

Although the evaluation criteria may be given weights in this phase (if
the weights are used at all), it is reasonable to postpone it until the main evalu-
ation, as the procedure for obtaining the weights may be an element of the
method used in the third phase.

The evaluation criteria should be arranged, depending on their measura-
bility, into the following groups:

a) objective and easily measurable, which can be evaluated based only
on software fact sheets, without need for testing demo versions or
careful reading of documentation,

b) objective and not easily measurable, which can be evaluated only
after careful reading of documentation or by testing demo versions,
but without need for configuring the software as for intended use
and without involvement of the end-users,

c) subjective, that can only be evaluated by questioning the end-users
after letting them use the configured software.

The preliminary evaluation (phase two) has the goal to shorten the can-

didate list by removing software that does not attain the acceptable level for
objective and easily measurable criteria based on the core requirements. The
removed candidate solutions will not be considered anymore, so it is important
that the source of information used at this stage is reliable.

The aim of the main evaluation phase is to obtain a limited number of
solutions to be considered for the final choice.

First, the candidate solutions are evaluated by experts on all objective
criteria based on the core requirements. Then, as in the previous phase, the list
is pruned by removing solutions that do not attain the acceptable level.

Next, the list of candidates is arranged according to how well they meet
the criteria, so that a short list (2-5 items) can be formed that will be consid-
ered further. Various methods may be used for this purpose, e.g., Hasse dia-
gram [3], outranking methods (e.g. ELECTRE) [15, pp. 49-73], or hierarchy
processes (e.g., AHP) [16].

70 Advances in Software Development

The in-depth evaluation takes into consideration all criteria, including
the subjective ones. Its scheme is akin to the main evaluation phase: the candi-
date solutions are first evaluated (yet this time by the end-users), the solutions
failing to achieve the acceptable level are discarded, and the remaining ones
are arranged, using a method of choice, into three ordered lists: one obtained
taking into consideration only the criteria based on core requirements, the se-
cond – combined core and additional requirements, and the third – all require-
ments (i.e., including the special ones).

4.4.3. Choosing the most appropriate solution

The goal of stage 3 is to select a single solution that will be adapted and
then adopted. There are only two phases in this stage: Discussion of evaluation
results and Making the choice.

First, a meeting should be organized to discuss the evaluation results.
The following stakeholders should take part in it: sponsors of the project (ac-
tual decision makers), members of the development team, external experts
having knowledge of the software on the short list – especially if there are no
people highly qualified in a specific software within the development team,
and representatives of the end-users – especially those who took part in the in-
depth evaluation phase.

The meeting should start with presentation of the evaluation results.
Then, during the discussion, members of the respective groups should provide
information important for making the choice, e.g.:

• the end-users who participated in the in-depth evaluation should point
to drawbacks or special advantages of respective solutions,

• the invited experts should confirm, that the mentioned drawbacks are
not due to wrong configuration or misusage,

• the members of the development team should declare if they are capa-
ble of fixing the mentioned drawbacks or adding specific advantages
to candidate solutions lacking them, and estimate required resources,

• the sponsors of the project should declare the resources they are will-
ing to contribute so that the limits of planned improvements can be de-
fined for respective candidate solutions,

 Managing the adaptation of open-source software... 71

• the end-users should state which of the candidate solutions they would
accept, either as they are, or after planned improvements.

The final decision on choosing the solution for adoption is made by the
sponsors of the project. It should be based on the results of the evaluation pro-
cess and the conclusions of the discussion.

4.4.4. Adapting the solution

There are three phases in the adaptation stage: (1) Acquiring the core of
chosen solution, installing it with all the necessary prerequisites, and configur-
ing it; (2) Acquiring, installing, and configuring the required add-ons; (3) Ap-
plying the planned code modifications.

Regarding phase 1 and 2, it is important to make sure that: (a) up-to-date
versions of software are acquired and installed; (b) software is properly con-
figured; (c) a due amount of tests is run before proceeding to the modification
phase, so that problems discovered later can be attributed to the modifications
rather than wrong configuration.

Every source code modification, regardless of its size (even if it consists
of merely few new lines of code), should be explained in the technical docu-
mentation of the system, in terms of its scope, purpose, relation to other modi-
fications, assumed conditions and possible risk factors. Regression tests are
required to assure that the modification does not jeopardize stability or security
of the system. If it is found to degrade system performance, an attempt to op-
timize the relevant code should be made.

Managing the adaptation does not end with the tests, but it continues for
the entire lifespan of the system. As the modifications are applied to a certain
version of the obtained software, they have to be reapplied whenever the origi-
nal software is updated. A special procedure for this purpose must be defined
in the technical documentation of the system, and it is convenient to prepare a
script to automate the process.

Sometimes, the update of the original software may render the modifica-
tions non-applicable in their original form, as the updated source code may
miss the context of the modification. This is why no update should be made to
the modified software before checking if it is possible to apply the fix to the

72 Advances in Software Development

updated version. Of course, system backup should be done before every update
so that reverting to the working version is possible.

If the modification cannot be applied or applying it to the updated sys-
tem causes its malfunction, the problem should be investigated by an expert
who should produce one of the following solutions:

a) decide that the modification is no longer needed as the issue it fixes
is already solved in the updated version of the software;

b) provide a walk-around to apply the modification to the updated ver-
sion of the software;

c) decide that the modification is still needed but cannot be applied as
it is, and suggest, taking into consideration the benefits of updating
the system, whether it is necessary to re-implement the modification
and proceed with the update, or the current version of the system
should still be used.

4.4.5. Developing new modules

Whenever the nature of the modifications and the architecture of the
original system allows it, they should be developed as new modules. In this
form, they are easier to apply, test, and less prone to compatibility problems in
case of future patches of the system core.

In order to achieve seamless integration with the system, the new mod-
ules should be developed in full accordance with the guidelines defined in the
system’s technical documentation and respective API’s.

If the modifications are of general nature, they could be of interest for
other users. It is then advisable to contribute the new module to the open-
source community, if the organization’s internal regulations permit distribution
of software developed by its employees as open source.

In case some of the modifications are suitable only for the intended sys-
tem users, the new module can still be published, provided it is pruned from
such elements. Depending on their kind and number, it may be accomplished
by:

• turning these elements into a profile of module configuration settings,
• forking the module into internal (full) and external (limited) versions,

 Managing the adaptation of open-source software... 73

• developing an additional module, only for internal usage.

4.4.6. Obtaining users’ feedback

The end-users’ opinions on the adapted system should be gathered
throughout its lifespan. A simple web form could be used to facilitate the
feedback process.

All received opinions should be read by an appointed person, so that the
management could be aware of the users’ attitude to the system. Contrasting
opinions should be resolved via discussion with the involved users. Bug re-
ports and feature requests should be sorted into three groups:

• pertaining to the implemented modifications – should be passed to the
internal development team;

• pertaining to the original system, but considered crucial for its use in
the organization – should also be passed to the internal development
team;

• pertaining to the original system, and not considered crucial for its use
in the organization – should be passed to the original system develop-
ers.

4.5.Experiences from the BalticMuseums 2.0 project

The BalticMuseums 2.0 project resulted in development of five software
systems, of which four were adaptations of open-source systems (see Table
4.3), the remaining one (the Panorama Manager [13]) being a closed-source
solution as no open-source functional equivalent had been found.

Note that open-source software was also used in this project to set-up
the system environment (Debian, MySQL, PHP), support the management of
the project (Redmine, DokuWiki), and other purposes (e.g., GIMP), yet none
of these was adapted in the sense described in this chapter, they were merely
configured.

We shall use the first of the systems mentioned in Table 4.3 (the OIP)
for an illustration of open-source software adaptation process. It was also the
first system developed within the BM projects, so although we present it as an

74 Advances in Software Development

example of application of FEChADO, in reality it served as an inspiration and
a model for the framework.

Table 4.3. Adaptations of open-source systems in the BalticMuseums 2.0 project

System Based on Scope of adaptation
Online Information
Platform

Drupal New website template devel-
oped, a few modifications
applied to the source code of
Drupal

Mobile Online
Information Plat-
form

Mobile Tools module for
Drupal

New mobile website template
developed

Kids’ Zone Drupal New website template devel-
oped, multimedia-related
scripts added

Online Ticketing
System

Ubercart module for Dru-
pal

New website template devel-
oped, multiple modifications
applied to the source code of
Ubercart module

Source: own elaboration.

First, a list of suggested requirements was assembled. The procedure

started with a brainstorming session involving IT specialists and representa-
tives of end-users. Then, a survey of similar systems was performed to enrich
the list. Next, questionnaires based on the compiled list of requirements were
presented at a meeting to the end-users, which resulted in several modifica-
tions of the requirements. As there are four museums involved in the BM pro-
jects, all principal decisions are made by consensus. After discussion and con-
sultation, the four museums agreed on the proposed list of requirements.

Subsequently, using a pair-wise-comparison-based approach modeled
according to the AHP method [16], the respective requirements were assigned
weights by the representatives of end-users.

After it was decided that the OIP would be developed on the basis of a
Content Management System, a list of 100 popular systems was prepared,
based on various web sources, including Wikipedia.

The evaluation and choice stages differed somewhat from the scheme
described in sections 3.2 and 3.3. The evaluation was wholly performed by a

 Managing the adaptation of open-source software... 75

team of IT specialists with large experience in CMS configuration and admin-
istration. They filtered the candidate system list, leaving only those systems
that could pass the requirements and were familiar to the team members. The
latter criterion was motivated by the will to have at least one person in the
development team that was skilled in configuration and administration of the
chosen CMS. As a result, only three systems remained on the list: Drupal,
Joomla!, and TYPO3.

The three systems were then evaluated on a set of criteria derived from
the list of requirements. The points awarded in respective areas were summed
and the systems were ranked according to the aggregate. Drupal topped the
ranking and was approved by the project management for acquisition. There
was no in-depth evaluation and no discussion.

Although the planned adaptation consisted only of developing a new
website template, several requirements could not be met without several small
modifications of the Drupal source code. Consequently, a relatively sophisti-
cated update guide had to be prepared. The applied changes were, however,
too scarce and too scattered to justify developing a new module.

The feedback obtained from the users revealed multiple flaws of the
system. The most important complaints concerned low performance and the
way content structure could be defined. The former was a consequence of the
used template design approach and was solved by a complete reimplementa-
tion of the template, but it could only be identified no sooner than late test
phase on the production server. The latter was a consequence of internal Dru-
pal workings, and there was nothing that could be done about it at that stage of
development, but it could have been identified earlier if an in-depth evaluation
had been performed, and then it could have affected the choice of the system.

4.6.Experiences from the BalticMuseums 2.0 Plus project

In the BalticMuseums 2.0 Plus project, only two software systems were
developed, both of which were adaptations of open-source software (see Table
4.4). Again, a number of open-source systems was also used to set-up the sys-
tem environment, support the management of the project, and other purposes,
without real adaptation.

76 Advances in Software Development

Table 4.4. Adaptations in the BalticMuseums 2.0 Plus project

System Based on Scope of adaptation
eGuide Content Sharing
System

ResourceSpace Modifications applied to the source
code of ResourceSpace

Photo Competition Man-
agement System

Drupal New website template developed

Source: own elaboration.

We shall use the first of the systems mentioned in Table 4.4 (the

eGCSS) as an example of applying FEChADO in its mature form to the open-
source software adaptation process.

The work on the system started with a project meeting, at which first a
brainstorming session was held, and then, through discussion and consultation,
an initial list of suggested requirements was assembled. On the basis of this list
a questionnaire was prepared and distributed to a larger number of end-users in
a form of a computer-assisted self-interview. The survey results were proc-
essed to form a list of requirements, divided into core and additional.

In the first attempt, the development team tried to complete stages one
and two of FEChADO using CMSmatrix. It is a web-based tool allowing to
compare over 1200 content management systems, using 145 criteria grouped
in ten categories: (1) system requirements, (2) security, (3) support, (4) ease of
use, (5) performance, (6) management, (7) interoperability, (8) flexibility, (9)
built-in applications, (10) commerce [7]. A mapping of the eGCSS require-
ments to these criteria was made [9, pp. 61-73], and then, a list of ten content
management systems that ranked best, according to the chosen criteria, was
obtained from CMSmatrix,.

A closer examination of these systems revealed that in reality none of
them is suitable for the intended use without significant modifications. The
failure can be attributed to the lack of relevant criteria in the CMSmatrix set,
too general criteria in the CMSmatrix set (e.g., “multimedia management”),
and different meaning of criteria in the CMSmatrix than in the system re-
quirements specifications (despite similar names). Even though the mapping
assigned respective requirements to CMSmatrix criteria best matching them,
the analogy turned out to be too weak. Although CMSmatrix could be a useful

 Managing the adaptation of open-source software... 77

tool for a CMS selection, it failed to provide support in the selection of a digi-
tal asset management system, in spite of it being a CMS of specific kind.

In the second attempt, the development team resorted to find candidate
solutions using web search engines. Note that at the time of the searching, the
topic of open-source digital asset management was not as well-researched as it
is today, with valuable reviews available in the Internet (see, e.g., [18]).

Six objective criteria were defined based on the core requirements of the
eGCSS. Every system found was examined on fulfilling them, so the phases of
listing candidate solutions and preliminary evaluation were not separated. As a
result, the obtained list contained only seven systems: ResourceSpace, Cyn.in,
TYPO3 with DAM extension, OpenKM, Alfresco, NotreDAM, and
EnterMedia.

The seven candidate solutions were then evaluated by experts on the six
objective criteria based on the core requirements, and a ranking was produced
using Hasse diagram [3]. In the next step, weights were assigned to the respec-
tive criteria, and a second ranking was produced, this time based on weighted
scores.

Three top solutions were chosen for in-depth evaluation: ResourceSpace
(which ranked first without considering the weights, and second considering
them), OpenKM (which ranked first considering the weights), and TYPO3
(which ranked second without considering the weights).

After the three systems were installed and configured, the end-users
were allowed to use them for the intended tasks – they uploaded multimedia
resources, organized them into collections, added metadata, searched for them
using various criteria, and downloaded them.

Surprisingly to the development team, the first impressions of all the
three systems were very negative. The users complained on both the function-
ality and the user interface of the systems, each of them having flaws of its
own. Because of such negative attitude, an approach based on the lesser evil
principle was assumed: to choose the system that would require least adapta-
tion to become acceptable for the end-users. The reported issues were there-
fore classified according to a scheme presented in Fig. 4.1.

78 Advances in Software Development

Fig. 4.1. Issue classification scheme

Source: own elaboration.

The in-depth evaluation lasted for a period of more than two months,
during which, different systems were considered as the best choice. Eventual-
ly, ResourceSpace was selected, even though it differed from the requirements
specification to a comparatively large extent. Its flaws, however, were consid-
ered either negligible or relatively easy to fix. The choice was made after dis-
cussion at a project meeting.

The problems with ResourceSpace were serious, as it lacked several re-
quirements from the specification, e.g. content hierarchy, granting users access
rights depending on the content’s institutional owner, and allowing specific
users to edit resource metadata while forbidding them to delete that resource.

After profound investigation of ResourceSpace functionalities, such as
themes, metadata-dependent access rights and search filters, it was found pos-
sible to emulate the missing functionalities using those that were available,
except for the last issue, which was solved by source code modification.

The adapted system was moved to the production server and opened for
normal use. As a larger number of end-users got into contact with the system,
many complaints were received, most of which caused merely by misunder-
standing of how the system should be used. It led to an additional training, and
preparation of a shorter, more comprehensible version of the system manual.

Is there a problem with solving the issue within estab-
lished time and resource limits?

Would users agree to
leave the issue unsolved?

Can the issue be solved
without source code modi-

fication?

± + – ±

 Managing the adaptation of open-source software... 79

There were, however, some technical issues reported. For instance, alt-
hough unprivileged users were unable to delete other users’ content (after the
fix described earlier), they were still able to remove it from other users’ collec-
tions, leaving it in the repository, but rendering virtually invisible (solving it
required further modification of the system source code).

Due to the changes in the source code, a system update guide was writ-
ten that included instructions on how to reapply the fixes after updating
ResourceSpace. So far, it has caused no maintenance problems.

4.7.Conclusions

Adaptation should be considered as an important element of the OSS
acquisition. The framework described in this chapter can be very useful for the
project management as a scheme for carrying out the acquisition process with
due attention paid to the opportunities of software adaptation.

The framework is flexible, and the proposed stages of the procedure
should not be treated as required, but as suggested. They can be combined or
even skipped, if the circumstances permit.

The two provided examples of use, respectively from the early and final
stages of the BM projects (as well as the framework) development, emphasize
the consequences of improper selection of candidate solutions, significance of
the in-depth evaluation phase, and how the possibility of adaptation could be
taken into consideration during evaluation, as well as the importance of gather-
ing and reacting to the users’ opinions.

Acknowledgements

This chapter was written with the financial support from the European Union.

Bibliography

[1] BalticMuseums 2.0 & 2.0 Plus Projects Website,
http://www.balticmuseums.org, 2013 [accessed 15.04.2013].

80 Advances in Software Development

[2] Beam G.: The Problem with Survey Research, Transaction Publish-
ers, New Brunswick, 2012, pp. 136-139.

[3] Brüggemann R., Halfon E.: Theoretical base of the program “Hasse”,
GSF, Neuherberg, 1995.

[4] Business Readiness Rating for Open Source,
http://docencia.etsit.urjc.es/moodle/file.php/125/OpenBRR_Whitepa
per.pdf, 2005 [accessed 15.04.2013].

[5] Cabano, M., Monti, C., Piancastelli, G., Context-Dependent Evalua-
tion Methodology for Open Source Software in J. Feller, B. Fitzger-
ald, W. Scacchi, A. Sillitti (eds.) Open Source Development, Adop-
tion and Innovation, Springer, New York, 2007, pp. 301–306

[6] Carbon R., Ciolkowski M., Heidrich J., John I., Muthig D.: Evaluat-
ing OpenSource Software through Prototyping, in: St.Amant K., Still
B. (eds.), Handbook of Research on Open Source Software: Techno-
logical, Economic, and Social Perspectives, Information Science
Reference, Hershey/New York, 2007, pp. 269-281.

[7] CMSmatrix, http://www.cmsmatrix.org, 2012 [accessed 7.02.2013].
[8] Free Software / Open Source: Information Society Opportunities for

Europe?, Working group on Libre Software,
http://eu.conecta.it/paper/paper.html, 2000 [accessed 15.04.2013].

[9] Komorowski T.: Wspomaganie podejmowania decyzji w zakresie
wyboru systemu zarządzania dokumentami (CMS/DMS), „Studies &
Proceedings of Polish Association for Knowledge Management” 56,
2011, pp. 61-73 [in Polish].

[10] Majchrowski A., Deprez J.: An operational approach for selecting
open sourcecomponents in a software development project, in:
O’Connor R., Baddoo N., Smolander K., Messnarz R., Software Pro-
cess Improvement, Springer-Verlag, Berlin/Heidelberg, 2008, pp.
176-188.

[11] Method for Qualification and Selection of Open Source software
(QSOS) version 1.6, Atos Origin, 2006,
http://master.libresoft.es/sites/default/files/Materiales_MSWL_2010_
2011/Project%20Evaluation/materiales/qsos-1.6-en.pdf, [accessed
15.04.2013]

 Managing the adaptation of open-source software... 81

[12] Midha V., Palvia P., Factors affecting the success of Open Source
Software, “Journal of Systems and Software” 85(4), 2012, pp. 895-
905.

[13] Miluniec A., Drążek Z., Komorowski T., Muszyńska K., Swacha J.:
A novel approach to panoramic gallery management on the example
of Balticmuseums 2.0 website. Forthcoming.

[14] Olsen R., Sheets C., Computer-Assisted Self-Interviewing (CASI),
in: Lavrakas P. J. (ed.), Encyclopedia of Survey Research Methods ,
SAGE Publications, Thousand Oaks, 2008.

[15] Roy B.: The outranking approach and the foundations of Electre
methods, “Theory and decision” 31, 1991, pp. 49-73.

[16] Saaty T. L.: The Analytic Hierarchy Process, McGraw-Hill, New
York, 1980.

[17] Stol K.-J., Babar M. A.: A Comparison Framework for Open Source
Software Evaluation Methods, in: Ågerfalk P., Boldyreff C., Gonzá-
lez-Barahona J. M., Madey G. R., J. Noll (eds.), Open Source Soft-
ware: New Horizons, Springer, Notre Dame 2010, pp. 389-394.

[18] Sarwan N.: Review of Available Open Source DAM Software,
http://www.opensourcedigitalassetmanagement.org/reviews/available
-open-source-dam, 2013 [accessed 15.04.2013].

[19] Swacha J., Muszyńska K., Drążek Z.: An outline of development
process framework for software based on open-source components,
Proceedings of the 14th International Conference on Enterprise In-
formation Systems, vol. 2, SciTePress, 2012, pp. 183-186

[20] Swacha J., Muszyńska K., Komorowski T., Drążek Z.: Development
and maintenance of a multi-lingual e-Tourism website on the exam-
ple of BalticMuseums 2.0 Online Information Platform, “Information
Management”, 3, 2011, pp. 237-246.

[21] Swacha J.: Koncepcja systemu współdzielenia treści dla elektronicz-
nych przewodników na przykładzie projektu BalticMuseums 2.0
Plus, „Studies & Proceedings of Polish Association for Knowledge
Management” 56, 2011, pp. 207-217 [in Polish].

[22] Wheeler, D. A., How to Evaluate Open Source Software / Free Soft-
ware (OSS/FS) Programs, http://www.dwheeler.com/oss_fs_
eval.html [accessed 15.04.2013.

Chapter 5

Software for eScience: from feature modeling to

automatic setup of environments

To increase our productivity when setting up various software environments,

we try to reduce the complexity of configuration tasks by managing components at

different levels of abstraction and by automating the process. This is particularly im-

portant (in terms of performance) when the configuration is not the direct objective of

our activity. When deploying environments for eScience applications the researcher's

main interest lies in executing experiments and obtaining results, not in tedious fine-

tuning of the computational platform itself. Tackling the challenge of automatically

setting up environments for in-silico experiments is the main motivation behind the

discussion presented in this work. When facing such a task, clear representation and

processing of component dependencies poses a challenge. In this work the Feature

Model notation, popular in the Software Product Line methodology and successfully

applied to configuration modeling, is examined for this purpose. This chapter presents

a feasibility study of applying the Feature Model to develop tools for automatic envi-

ronment configuration using a prototype implementation. The presented discussion has

led the authors to further extend this idea, covering a wider range of applications. The

chapter describes the architecture of an extensible framework automating various

deployment and component installation tasks based on the Feature Model.

5.1.Introduction

eScience [1, pp. 93-40] is fast becoming a popular approach to scientific
research. However, new research paradigms such as simulation and data inten-
sive processing bring new challenges. Preparing an eScience application exe-
cution environment is a complex and time-consuming process, frequently re-
quiring configuration of numerous cooperating components. Such components
may include applications and datasets; hence their deployment requires exten-

84 Advances in Software Development

sive knowledge in the area of OS administration, cloud platforms, communica-
tion protocols and others.

Following analysis of requirements and review of available technologies
it seems clear that there is need for a tool which would enable selection of
eScience application prerequisites in a simple and intuitive way, and then de-
ploy them in a given environment. The tool presented here combines the use of
the Feature Model for modeling the component domain with a Provisioning
system for application deployment. The Feature Model is a representation of
product feature relationships, known for its broad use in science and industry,
including Software Product Lines.

The objective of this chapter is to present a feasibility study of applying
the Feature Model to modeling eScience application component dependencies,
implemented as a tool for automatic deployment of execution environments.
The architecture described in Section 5.2 was implemented as a prototype sys-
tem using tools and libraries presented in Section 5.3 and then evaluated using
a case study (Section 5.4). Based on this evaluation a generalization of the idea
is proposed (Section 5.5). We also try to address the following question: how
appropriate is the presented approach for configuring environments for a wider
range of applications (not limited to eScience), with a broader spectrum of
installation methods (not only Provisioning Tools) Validation of the architec-
tural concept results in the design of a expansible software production line
framework which better fulfills the presented evaluation criteria. Related work
is presented in Section 5.6.

5.2.Description of the proposed solution

eScience applications consist of many components, often using separate
technology stacks. In the framework of the VPH-Share project [11] examples
of such applications include @neurIST [16] (simulation of brain aneurisms),
euHeart [21] (human heart simulations), Virolab [5, p. 8] (virtual virological
laboratory) and VPHOP [28] (prediction of osteoporotic bone fracture risk).
Here, we deal with components being a process of an operating system, appli-
cations deployed in application containers, interpreted code written in various
interpreted programming languages and various types of databases, each of

 Software for eScience... 85

which needs to reside on a virtual machine being a part of an execution envi-
ronment. The wide variety of components calls for a generic scripting ap-
proach for installation of prerequisites. We assume that each component is
associated with an installation unit comprised of deployment scripts and a set
of configurable attributes. The user selects components which form the de-
ployment configuration. This approach gives flexibility while also introducing
the need to cope with component dependencies, analysis and visualization.
Achievements of the Software Product Line appear to be particularly helpful
for this purpose. The Feature Model – successfully applied in the Software
Product Line – seems to match the gap between configuration element domain
modeling and execution environment instantiation mechanisms.

The Feature Model [4, p. 3] is a notation used to define a domain of ob-
jects as a set of features. By building a tree-like hierarchy (parent-child rela-
tionships) and defining types of sibling relationships (and, or, xor), it organizes
dependencies and helps to identify commonalities and variabilities [1, p. 7]. It
allows also for representing dependencies which do not fit into a hierarchical
model (cross-tree constraints) and, in some variants, defining even more com-
plex requirements (extended Feature Models) [3, p. 3]. By using a simple
mapping to well-known decision problems, the Feature Model is well suited
for representing dependency logic [10, p. 3] (it is understandable to a comput-
er). There are various implementations of Feature Model operations which
simplify configuration processes, enable automatic completion of decisions
and support error detection [3, p. 16]. Owing to the simplicity of the graphical
Feature Model representation and its hierarchical construction (which allows
for reducing model complexity), it is also understandable to a human and well
suited to visualization. Furthermore there are ready-to-use Feature Model vis-
ualization tools.

The Software Product Line (SPL) [1, pp. 4-6] is a group of methods
which describe the process of organizing software creation in a way that al-
lows for increase the reusability of artifacts and leads to partial automation of
the software product creation. The problem addressed by SPL methods has
much in common with automation of eScience application deployment. In the
process of building a production line it becomes necessary to map the product
feature model to the architecture of a production line and to define product
instantiation methods. However, product instantiation is one of the less fre-

86 Advances in Software Development

quently studied activities in the domain of software product lines
Therefore, an interesting challenge is to examine the advantages and dra
backs of the selected mapping method as well as the mechanism of eScience
application instantiation using a prototype tool.

Fig. 5.1. Tool architecture. Model configuration links
and Deployer

The architecture of a tool which implements the presented features
comprises two main components, presented in Figure
a module associated with the user interface, allowing for stepwise selection of
Feature Model elements. The system automatically eliminates potentially co
flicting decisions from the decision space. The selected
ments are supplemented by a set of attributes and passed to the
ule. The Deployer’s task is to deploy the configuration on a dedicated exper
ment execution machine. The Deployer
an acyclic dependency graph based on relationships defined in the
Model. This graph is sorted topologically to obtain the order of installation. It
should be emphasized that each feature in the model is mapped to at most one
installation unit and therefore each model element repr
tion unit or a group of other features.

5.3.Choice of technology

In order to choose an appropriate approach to automatic configuration of
the execution environment a study of the available technological solutions has
been performed [14, pp. 1-32]. Three classes of tools were taken into account
– Distributed Shell, Unattended Installation

Advances in Software Development

quently studied activities in the domain of software product lines [5, p. 1].
Therefore, an interesting challenge is to examine the advantages and draw-
backs of the selected mapping method as well as the mechanism of eScience

using a prototype tool.

1. Tool architecture. Model configuration links Configurator
Deployer modules.

The architecture of a tool which implements the presented features
comprises two main components, presented in Figure 5.1. The Configurator is
a module associated with the user interface, allowing for stepwise selection of

elements. The system automatically eliminates potentially con-
flicting decisions from the decision space. The selected Feature Model ele-

are supplemented by a set of attributes and passed to the Deployer mod-
’s task is to deploy the configuration on a dedicated experi-

Deployer validates the configuration and creates
d on relationships defined in the Feature

. This graph is sorted topologically to obtain the order of installation. It
should be emphasized that each feature in the model is mapped to at most one
installation unit and therefore each model element represents either an installa-
tion unit or a group of other features.

In order to choose an appropriate approach to automatic configuration of
the execution environment a study of the available technological solutions has

32]. Three classes of tools were taken into account
Distributed Shell, Unattended Installation and Provisioning Tools. Evalua-

 Software for eScience... 87

tion was influenced by factors such as applicability in private cloud infrastruc-
tures, capability for simultaneous configuration of multiple Virtual Machine
instances and redeployment potential. Given such criteria the most promising
solutions appear to belong to the group of Provisioning Tools. That is why a
provisioning tool was chosen to support the presented prototype. The suitabil-
ity of four popular provisioning tools was evaluated: Bcfg2 [17], CFEngine
[18], Chef [19], Puppet [24]. Comparison criteria included ease of integration,
availability of ready-to-use installation packages, essential compatibility with
the Java Enterprise Edition technological stack, support for various operating
systems and type of license (relevant for the VPH-Share project). As each of
the reviewed tools represents a slightly different approach and each might be
useful in performing specific tasks, it is hard to compare them directly. Never-
theless the Chef platform seems to be the best fit for the selected criteria due to
its full support for Windows, a straightforward Java API and a large user
community providing ready-to-use installation scripts. Using Chef consists of
two main tasks: maintaining an installation unit repository and performing
deployment. The Chef repository is comprised of so-called cookbooks: pack-
ages containing scripts and requisites needed to perform installation. Deploy-
ment is performed by Chef on the basis of an ordered list of cookbooks with
associated attributes.

We have also evaluated tools for automatic analysis of dependencies
represented by the Feature Model. The use of libraries implementing various
Feature Model operations enables auto-completion of configuration decisions,
conflict detection etc. [2, p. 16]. The reviewed libraries (SAT4J [25],
JavaBDD [23], Choco [20], AHEAD [15], FaMa [22], SPLAR [26]) imple-
ment the above mentioned tasks at different levels of abstraction and perform
model operations on the basis of two fundamental Feature Model representa-
tion mappings – SAT (Boolean Satisfiability Problem) or BDD (Binary Deci-
sion Diagram) trees [9, p. 3]. As there are differences with regard to pro-
cessing efficiency and memory utilization depending on the choice of data
structure, the BDD-based approach was chosen due to its better performance
in operations associated with interactive configuration of a single model. The
prototype implementation bases on the SPLAR library due to its ease of use
and the ability to reuse visualization code fragments of a related open-source
tool – SPLOT [26].

88 Advances in Software Development

5.4.Tool and architecture evaluation

The presented tool, called Cloudberries, was evaluated in a case study.
It was integrated with the web portal as well as with the private cloud infra-
structure of the VPH-Share project and validated using the euHeart [21] appli-
cation as a deployment testbed. The structure of euHeart allowed us to com-
pletely automate its deployment. The environment configuration process con-
sists of twelve steps, including locating files in the target operating system,
creating user accounts, granting user rights, etc. Although the process is quite
simple, configuration steps require some administrative knowledge. Time sav-
ings depend on individual skill and are hard to measure directly. Most de-
ployment steps can be easily expressed as cookbooks (Chef installation units)
and mapped to Feature Model elements. Cookbooks were created for such
components as python, python-pip, xvfb, wine, libxp6, openjdk-6-jdk, python-
dev and libxslt1-dev. Procedures specific to euHeart installation were collected
in a separate cookbook.

In the course of evaluating the tool we came to some conclusions repre-
senting the common ground between implementation and architectural design.
Using the current mechanism of system extension (based on cookbooks) it is
almost impossible to automate creation of a new Virtual Machine instance.
This is due to several limitations which cannot easily be bypassed. One of the
most significant problems is that all Chef deployment scripts are invoked on
an already-existing machine available via the SSH protocol. Although Chef
can be integrated with a cloud stack, this is not a procedure which can be per-
formed by the user on their own, e.g. by providing an implementation for a
new feature. Even if VM instantiation could be represented as an installation
unit, passing attributes between installation units would remain an issue. Some
attributes, such as the IP address of the machine newly allocated by the cloud
hypervisor, cannot be defined by the user and have to be produced by the sys-
tem.

Although the presented architecture is performing its function well, it
has some shortcomings. First, the installation scheduling process is imperfect
as it is based on the feature dependency model. Rules which govern coexist-
ence of components in a single environment are not necessarily connected with
the order of their deployment in a single product (deployed application). In

 Software for eScience... 89

particular, a situation in which product feature dependencies form a cycle
should be taken into account. Such cycles prevent us from considering de-
pendency relationships as a chronological order of deployment. Secondly, in
the current situation there is no way to define a flow of attributes between in-
stallation units. An installation unit should be allowed to base its behavior on
the product of the previous unit. Moreover, the architecture does not allow for
sharing attributes and, consequently, the same attributes have to be specified
multiple times for different installation units. Finally, all of the installation
units are subordinated to a tool which manages their sequential execution
(Chef) – this limits potential avenues of expansion to mechanisms built into
that tool.

By limiting the model-architecture mapping to the feature-component
correspondence, we lose the flexibility of defining product features inherent in
classic approaches to feature-based domain analysis [9, pp. 35-39]. However,
thanks to automatic mapping between features and installation rules, we gain
the flexibility of expanding our production line, which is clearly an advantage
of the presented approach. A question now arises: how to modify the architec-
ture to gain compromise

5.5.Research result: a refined architecture

Overcoming the drawbacks presented in the previous section would al-
low us to broaden the range of supported applications and create a more gener-
ic solution. As shown in Figure 5.2.A., the proposed refined architecture is
composed of a dynamically modifiable, layered core, which includes a produc-
tion line, a user interface and modules managing its lifecycle.

Feature Layer dependencies define sets of features which may consti-
tute a correct product configuration. The Feature Model validation is more
complex due to the influence of installation dependencies (Deployment Layer).
An element of the Feature Model is treated as a feature of product configura-
tion and a representation of an installation unit at the same time. Each installa-
tion unit provides an implementation of the feature instantiation as a plug-in
for the Provider Layer. Installation may be implemented as arbitrary behavior
using a chosen programming language. Within the Deployment Layer the in-

90 Advances in Software Development

stallation dependency graph is define
ture Model and so-called ports), along with installation dependency edges. The
graph defines the order of executing installation units representing elements of
Feature Model while ports define types of information tr
them (Figure 5.2.B.). Each port is either an attribute transmitted between i
stallation units or a production line state. Each port has a type, zero or more
producers and zero or more consumers. Each element of the Feature Model
may have zero or more input ports and zero or more outputs
input port is an attribute provided prior to unit installation. An output port
defines an attribute produced by the unit. A port without a producer is pr
cessed as an attribute provided by the system user. Each producer of a single
port has to be part of a different configuration:
each port is produced only once, with the exception of production line states
(these may have multiple producers invoked in an unspecified order). The
Provider Layer is where the implementation of installation units is pro
the form of plug-ins (e.g. invocation of Chef). Each element of the Feature
Model is associated with a single provider
interface defined by input and output ports in the

Fig. 5.2. Refined architecture – production line framework (A). Fragments of an insta
lation dependency graph – passing a parameter between feature installation units via a

so-called port (B); cyclical dependency (C).

These three layers allow for dynamic expansion of the produc
and are complemented by several other modules. The
the Feature Model configuration panel for the end user. The user selects co
ponents, defines the required attributes and instantiates the product. The
configurator: an administration panel used for production line expansion. It
supports modification of Feature Model and installation dependency graph as
well as installing provider plug-ins. The

Advances in Software Development

stallation dependency graph is defined as a set of nodes (elements of the Fea-
), along with installation dependency edges. The

graph defines the order of executing installation units representing elements of
Feature Model while ports define types of information transported between

. Each port is either an attribute transmitted between in-
stallation units or a production line state. Each port has a type, zero or more
producers and zero or more consumers. Each element of the Feature Model
may have zero or more input ports and zero or more outputs (Figure 5.2.B). An

provided prior to unit installation. An output port
defines an attribute produced by the unit. A port without a producer is pro-
cessed as an attribute provided by the system user. Each producer of a single
port has to be part of a different configuration: in a single cycle of installation
each port is produced only once, with the exception of production line states
(these may have multiple producers invoked in an unspecified order). The

is where the implementation of installation units is provided in
ins (e.g. invocation of Chef). Each element of the Feature

provider. Each provider has to satisfy the
interface defined by input and output ports in the Deployment Layer.

production line framework (A). Fragments of an instal-
passing a parameter between feature installation units via a

(B); cyclical dependency (C).

These three layers allow for dynamic expansion of the production line
and are complemented by several other modules. The Product configurator:
the Feature Model configuration panel for the end user. The user selects com-
ponents, defines the required attributes and instantiates the product. The Model

administration panel used for production line expansion. It
supports modification of Feature Model and installation dependency graph as

ins. The Validator: a module for assessing the

 Software for eScience... 91

correctness of the Feature Model. Validation is performed on the basis of an
installation dependency graph defined in the Deployment Layer. The Validator
seeks cycles in the graph (Figure 5.2.C.) and checks if all the features belong-
ing to each cycle also belong to any correct model configuration. The com-
plexity of this operation is dependent on the complexity of cycle detection and
validation of partial model configurations (dependent on implementation of the
Feature Model operations). If a model configuration containing all of the cycle
elements exists, feature selection has not been performed properly and the
feature model is incorrect. The Validator also validates the dependency graph
by analyzing nodes which do not represent a production line state. Each node
must have no more than a single producer in a single model configuration. The
Scheduler: a module scheduling an installation order on the basis of dependen-
cies in the Deployment Layer. In order to create a schedule the Scheduler per-
forms topological sorting of dependency subgraph which is limited to the cur-
rent configuration. The Workflow manager: the module responsible for man-
aging running installations and passing attributes between units.

Defining an installation dependency graph clearly introduces some
overhead in the process of creating new Feature Model elements. However,
scanning for configurations containing elements whose installation procedures
cannot be ordered chronologically is necessary to ensure the correctness of the
model. Therefore, introducing this additional formal description allows us to
reduce the likelihood of errors in modeling the configuration domain.

5.6.Related work

This section presents some different approaches to mapping the Feature
Model to product line architectures and product instantiation. In [13] automatic
creation of Java Enterprise Edition family applications is described. Configu-
ration files used by the base production line components (Spring framework
Object Factory configuration, application container Deployment Descriptor)
are generated on the basis of a model configuration. The authors propose a
solution tightly coupled with a specific technology stack and much less generic
than the one presented in this chapter. The instantiation process is partially
manual, which also differs from our solution. Nevertheless, an interesting as-

92 Advances in Software Development

pect of this approach is the mechanism of component state probes enabling
monitoring of installation progress and application lifecycle. The study de-
scribed in [7] presents an approach to automatic creation of applications based
on aspect programming. Features are mapped to so-called Object Teams –
modules grouping sets of classes whose behavior can vary depending on the
aspect. The solution is limited to developing software which is subsequently
compiled. One idea worth pursuing in future work seems to be the substitution
of behavior on the basis of requirements which are represented as features.
Much like the presented work this study requires defining attributes. The au-
thors of [8] present some ideas which may drive further research. In their pa-
per Feature Model elements are also mapped to components, however each
component consists of a set of states and a definition of its inner architecture,
expressed as a Feature Model. Component construction may vary between
revisions. It is worth noticing that dependencies between component states are
considered at the Feature Model level, which may be a good alternative to the
dependency graph concept described in Section 4 of this chapter. The FArM
system presented in [12] aims to provide a transformed FM where each feature
can be implemented in an architectural component. At the beginning of the
process model elements are described by additional semantics (e.g. Quality
Features) which enable the system to choose an appropriate approach to treat-
ing each individual feature. The notion of the provider presented in this work
(Section 4) can be adapted to specify any semantics within the rules of produc-
tion line operation.

5.7.Conclusions and future work

Although the tool presented in this work is a prototype, it has proven
successful in the realization of its assigned task. Cloudberries links the benefits
of software provisioning with the specific requirements of the scientific com-
munity, increasing the productivity of researchers. Moreover, as shown in this
chapter, eliminating some architecture shortcoming allows us to design a ge-
neric framework of an expansible production line with a much wider range of
applications. The developed solution constitutes an approach to mapping the
Feature Model to a production-line architecture, somewhat different than those

 Software for eScience... 93

presented in other publications. Careful comparison and evaluation of its bene-
fits will be the subject of further work. Planned research will focus on the se-
lection on the best approach to modeling dependencies and automatic compila-
tion of applications comprised of different types of components.

Acknowledgement

The work is partially based on an M.Sc. thesis [14] and was partially funded
by the EC ICT VPH-Share Project [27] and the corresponding KI AGH grant
(contract no. 269978).

References

[1] Belloum A., Inda M. A., Vasunin D., Korkhov V., Zhao Z.,
Rauwerda H, Breit T. M., Bubak M., Hertzberger L. O.: Collabora-
tive e-Science Experiments and Scientific Workflows, IEEE Internet
Computing, Volume:15, Issue: 4, DOI: 10.1109/MIC.2011.87, pp. 39
- 47, 2011.

[2] Benavides D.: On the automated analysis of Software Product Lines
using Feature Models. A framework for developing automated tool
support, PhD thesis, Department of Computer Languages and Sys-
tems, ETSI Informática, University of Seville, Spain, 2007.

[3] Benavides D., Segura S., Ruiz-Cortés A.: Automated analysis of fea-
ture models 20 years later: A literature review, Information Systems,
Volume 35 Issue 6, DOI: 10.1016/j.is.2010.01.001, pp. 615-636,
2010 .

[4] Benavides D., Trinidad P., Ruiz-Cort ́s A.: Automated Reasoning on
Feature Models, Advanced Information Systems Engineering: 17th
International Conference, Proceedings, DOI: 10.1007/11431855_34,
pp. 491-503, 2005 .

[5] Bosch J., Högström M.: Product Instantiation in Software Product
Lines: A Case Study, Second International Symposium on Genera-
tive and Component-based Software Engineering, DOI: 10.1007/3-
540-44815-2_11, pp. 149-163, 2000.

94 Advances in Software Development

[6] Bubak M., Gubala T., Kasztelnik M., Malawski M.: Building Col-
laborative Applications for System-level Science, Advances in Paral-
lel Computing, Vol. 18, 2009, High Speed and Large Scale Scientific
Computing, DOI: 10.3233/978-1-60750-073-5-299, 2009.

[7] Hundt C., Mehner K., Pfeiffer C., Sokenou D.: Improving Alignment
of Crosscutting Features with Code in Product Line Engineering,
Journal of Object Technology, Volume 6, Number 9, pp. 416-436,
2007.

[8] Jansen S., Brinkkemper S.: Modelling Deployment using Feature
Descriptions and State Models for Component-Based Software
Product Families, Proceedings of the Third international working
conference on Component Deployment, DOI: 10.1007/11590712_10,
pp. 119-133, 2005.

[9] Kang K., Cohen S., Hess J., Novak W., Peterson A., Feature-
Oriented Domain Analysis (FODA) Feasibility Study, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, Technical Report CMU/SEI-90-TR-021, 1990.

[10] Mendonça, M.: Efficient Reasoning Techniques for Large Scale Fea-
ture Models, PhD thesis, School of Computer Science, University of
Waterloo, 2009 .

[11] Nowakowski P., Bartynski T., Gubala T., Harezlak D., Kasztelnik
M., Malawski M., Meizner J., Bubak M.: Cloud Platform for Medi-
cal Applications, eScience, 2012.

[12] Sochos P., Riebisch M., Philippow I., The Feature-Architecture
Mapping (FArM) Method for Feature-Oriented Development of
Software Product Lines, Proceedings of the 13th Annual IEEE Inter-
national Symposium and Workshop on Engineering of Computer
Based Systems, DOI: 10.1109/ECBS.2006.69, pp. 308-318, 2006.

[13] White J., Schmidt D. C., Czarnecki K., Wienands C., Lenz G.,
Wuchner E., Fiege L.: Automated Model-based Configuration of En-
terprise Java Applications, 11th IEEE International Enterprise Dis-
tributed Object Computing Conference, DOI:
10.1109/EDOC.2007.22, 2007.

[14] Wilk B.: Installation of complex e-Science applications on heteroge-
neous cloud infrastructures, MSc thesis, Faculty of Electrical Engi-

 Software for eScience... 95

neering, Automatics Computer Science and Electronics, AGH
Kraków, 2012.

[15] AHEAD: http://www.cs.utexas.edu/~schwartz/ATS.
[16] @neurIST: http://www.aneurist.org.
[17] Bcfg2: http://trac.mcs.anl.gov/projects/bcfg2 .
[18] CFEngine: http://cfengine.com.
[19] Chef: http://www.opscode.com/chef.
[20] Choco: http://www.emn.fr/z-info/choco-solver.
[21] EuHeart: http://www.euheart.eu.
[22] FaMa: http://isa.us.es/fama.
[23] JavaBDD: http://javabdd.sourceforge.net.
[24] Puppet: http://docs.puppetlabs.com.
[25] SAT4J: http://www.sat4j.org.
[26] SPLAR, SPLOT: http://www.splot-research.org.
[27] VPH-Share: http://www.vph-share.eu.
[28] VPHOP: http://www.vphop.eu.

Chapter 6

PlanICS 2.0 – a web service composition system

Distributed web services with well-defined interfaces enable building complex

functionalities from simpler ones. An automatic web service composition prepares an

execution plan specifying how to reach a given goal, fitting the services together and

choosing an optimal provider for each required service type. PlanICS 2.0 is a web

service composition system implementing our original approach aimed at providing

flexibility at the level of modelling the reality in which the web services operate, and

enabling to handle the services that do not publish their internal semantics, but com-

municate only by simple query/answer entries. PlanICS 2.0 separates between an ab-

stract and a concrete planning phase, where the former deals with service types while

the latter with their concrete instances, thus making the matching more efficient. An-

other distinguishing feature of the system consists in defining a computation engine as

an independent block, which enables to compute plans using any suitable approach.

Currently, two engines, based on a genetic algorithm and an SMT-solver, have been

implemented. This chapter presents PlanICS 2.0 at a general level, comparing it also to

related solutions from the area of automated web service composition.

6.1.Introduction

Automatic composition of web services [2, 1, 12] is a relatively fresh re-
search area, gaining momentum as a web service-based infrastructure is be-
coming more and more popular. The problems to be solved are of very broad
scope: syntactic matching of different description languages and approaches,
dealing with semantic differences, high complexity associated with a large
number of distributed services, various formulations of goals to be reached,
etc. PlanICS 2.0 is a system implementing our original approach which solves
the composition problem in some clearly separated stages. Fig. 6.1. shows the
general PlanICS 2.0 architecture. The information about the services is stored
in the following way: an ontology, managed by the ontology provider, con-

98 Advances in Software Development

tains a system of classes describing the types of the services as well as the
types of the objects they process, while the service registry keeps an evidence
of real-world web services, registered accordingly to the service type system.
PlanICS 2.0 uses a state-based approach, which means that there are states
(worlds) representing (partial) 'snapshots' of the reality, and services trans-
forming them by modifying object attributes and adding new objects. Compo-
sition is thus understood as searching for a set of services capable to process
certain states in a desired way.

Fig. 6.1. A diagram of PlanICS 2.0 system architecture. The bold arrows correspond to
computation of a plan, the thin arrows model the planner infrastructure, the dotted

arrows represent the user interaction.

The user expresses a goal by a query, referring to objects and adding
constraints, and defining an initial world to start with and an expected world to
be reached. The system searches for a service composition transforming a sub-
set of the initial world into a superset of the expected world. The latter, ob-
tained by executing services according to a plan, is called a final world.

The composition process looks as follows: in its first stage, an abstract
planner produces a (context) abstract plan, matching services at the level of
input/output types. In the second stage, this plan is used by an offer collector,
i.e., a tool which queries real-world services. The result is an offer plan con-
taining concrete offers produced by service instances of appropriate types. In
the third stage, the offers are searched by a concrete planner in order to find
the best solution maximising a quality function.

 PlanICS 2.0 - a web service composition system… 99

PlanICS 2.0 has been revised and extended comparing to its previous
edition [4, 5], making it easier to adapt to real-world applications (a compari-
son of the two versions is provided in the final section). This chapter gives an
overview of PlanICS 2.0 in a way strict but informal, because of the space
limitations. The rest of the chapter is structured as follows. In Section 6.3 the
basic notions are introduced, necessary to describe the key topic of planning in
Section 3.

6.2. Related work

The research in the area of automatic web service composition started
very briefly after web services themselves became an important part of the
modern IT. Many different approaches have been put forward, with several
aims, ideas, and solutions. Here, we briefly describe the state-of-the-art in the
field.

The Entish system [1] and the WSMO/SESA project [15] are two ap-
proaches particularily close to PlanICS 2.0 by sharing the idea of using ontol-
ogies with a formal semantics for representing knowledge about services. The
major common features shared with Entish are discovering service capabilities
by web communication, multi-stage planning, and using a similar service de-
scription language (a restricted quantification has been introduced to PlanICS
2.0). WSMO is similar to PlanICS 2.0 with respect to expressing the goal as a
system state and using mediators/proxies for communicating with real-world
services. PlanICS 2.0 differs from both the systems by a service model, ex-
tending the IOPE descriptions with mapping inputs/outputs of services to
states of the transformed worlds, and an automatic conversion of the planning
problem to the abstract domain (for planning in service types). Another differ-
ence is that our system does not (yet) execute services.

Among other approaches to service composition, [11] tackles the prob-
lem as a logic-based program synthesis using theorem provers. A semi-
automatic composition is described in [13], and special languages to describe
plans were proposed in [6] and [10]. An important group of methods formu-
lates service compositions in terms of AI-planning. One of the most commonly
used planning approaches is STRIPS/PDDL, used for example in [9].

100 Advances in Software Development

Testing of the developed solutions is sometimes problematic as there are
still not sufficiently many available real-world services. Thus, own testbeds
were developed, enabling composition testing while setting the parameters of
services [3]. PlanICS 2.0 also implements such a tester [7, 14].

6.3.Basic notions

Below we introduce basic notions for describing the planning stages of
PlanICS 2.0.

6.3.1. Objects, object types, ontology

One of the main assumptions of our approach is that all the web services
in the domain of interest as well as the objects processed by the services can be
strictly classified in a hierarchy of classes, organised in an ontology (the ontol-
ogies are encoded using the OWL language [8]). All the classes are derived
from the base class Thing. There are three direct descendants of Thing, namely
Artifact, Service, and Stamp. The rest of the ontology modelling the domain of
interest can be designed in an arbitrary way, but not violating the rules pre-
sented below.

The branch of classes rooted at Artifact is composed of the types of ob-
jects the services operate on, while the branch rooted at Stamp contains types
of special-purpose objects aimed at confirming service executions and describ-
ing certain execution features (like a price or an execution time). Each object
type definition consists of a number of typed attributes specifications, with the
set of types including integer and real numbers, boolean values, dates and ref-
erences to other objects. An object of a given type is an instance of the appro-
priate class.

The rules of class inheritance: a subtype class contains all the attrib-
utes of its parent classes, and optionally introduce some more. Multi-base in-
heritance is also allowed. The names of the attributes are unique within the
ontology.

Valuations of objects, worlds: An object valuation is a function that
assigns to each attribute of the object a value from the respective domain. A

 PlanICS 2.0 - a web service composition system… 101

world is a set of objects together with their valuations. If partial valuations for
a set of objects are specified only, then they define a set of worlds, of elements
determined by all the possible assignments for the missing values, covering the
respective domains. By a sub-world of a world w we mean a restriction of w to
some subset of objects from w. Given two objects o, o’ and their valuations vo,
vo’ we say that vo’ is compatible with vo if the type of o’ is either the same as
the type of o or is a subtype of that type, and the values of vo and vo’ are the
same for all the common attributes of the objects.

Consequently, a world w is compatible with a world w if there exists a
one-to-one mapping between the objects of w and w’ such that each object
from w’ is compatible with the object of w it corresponds to.

6.3.2. Services

A key notion of the approach is that of a service. We assume that each
service processes a set of objects, possibly changing values of their attributes,
and produces a set of new (additional) objects. The types of services available
for planning are defined as elements of the branch of classes rooted at Service.
Each service type stands for a description of a set of real-world services of
some common features.

The common features of the services of a given type are described using
the attributes introduced by the Service class. These attributes are: in, inout,
and out aimed respectively at specifying sets of objects the service of a given
type requires to execute (leaving them unmodified), processes while the execu-
tion (possibly modifying) and produces as its result, preCondition and
postCondition (pre and post, for short) aimed at specifying the conditions the-
se objects are to satisfy, and inquiry, offer, and assign enabling to describe the
interaction with a real-world service of this type (an intuition behind the ser-
vice description is presented in Fig. 6.2.). Technically, the values of pre and
post are Boolean formulas (encoded in strings, similarly as the other features
of services; an interpretation of these strings is the main task of the PlanICS
2.0 parser) being combinations of expressions over attributes of the objects
from in, inout and out (respecting type limitations) and functions from a cer-
tain set applied to these attributes. In turn, the values of inquiry and offer are

102 Advances in Software Development

sets of (typed) parameters specifying respectively the data to be sent to a real-
world service of the given type, and the data which will be received as an an-
swer. The value of the assign attribute is a set of assignments specifying a
relation between the contents of inqury and offer and the attributes of objects
from the sets in, inout and out. The values of all the above attributes are kept
in the ontology as the valuation of a special instance of the corresponding
class, called a metaservice.

Fig. 6.2. PlanICS 2.0 service model. The boxes correspond to in, out, inout of a ser-
vice, the puzzle- shapes model objects, the dots within them - their attributes.

The inheritance rules for the classes from the Service branch are the
same as for the rest of the ontology. However, additional rules are needed to
describe a computation of effective values of the attributes of metaservices
being instances of derived classes. So, the formulas pre and post of such a
metaservice are conjunctions of the corresponding formulas of all the ances-
tors up to the root of the hierarchy, and the formula specified explicitely. Simi-
larly, the sets in, inout, out, inquiry, offer, and assign are unions of the appro-
priate sets for all the ancestors, and the set given explicitely. However, if the
same object name is used in a set in a parent and a child class, then the one
from the descendant must belong to a class derived from that from the ances-
tor, which means that it overrides the corresponding object from the parent
specification.

Semantics: A service type s is understood as a pair of world sets, called
the input and the output worlds, respectively. The input worlds consist of ob-
jects given by the union of the sets in and inout, of the valuations determined

 PlanICS 2.0 - a web service composition system… 103

by the pre formula. Similarly, the output worlds are determined by the union
of the sets in, inout, out, and the post formula.

A service type s can transform a world w if some its sub-world is com-
patible with some input world of s. The result of such a transformation is a
world w’ composed of the set of objects obtained by enriching that of w by the
objects produced by s (i.e., given by its out). The valuation of each object
; ∈ c ∪c′ not used as the inout parameter of s is the same in w and in w’, the
valuations of all the remaining objects from c ∩ c′ (i.e., used as the inout
parameters of s) can by different from these in w only if this is implied by the
assign attribute of s, and the objects from w’ \ w (produced by s) have their
valuations assigned in a way resulting from the assign attribute of s. The val-
uations satisfy also the post formula of s. By a transformation sequence we
mean a sequence of service types such that the first service type is able to
transform a given world, and each subsequent service type is able to transform
the result of the previous transformation.

Service registry: The service registry is an element of the system which
keeps an evidence of real-world web services, registered by their providers
accordingly to the service types given by the ontology. Each entry of the regis-
ter corresponds to one real-world service (however, the service provider can
register its functionality using a number of PlanICS 2.0 service registry entries,
for example to declare its compatibility to several PlanICS 2.0 services), and is
a tuple containing an unique identifier of the service (assigned by the system),
a type of the service (taken from the ontology), its specific pre and post that
express conditions to be satisfied by the data the service receives and returns
(the conditions are therefore logical formulas over the components of inquiry
and offer for the appropriate class), and an offerBinding program responsible
for interacting with the real-world service and obtaining this way offers satis-
fying requirements of interest.

6.4.Planning

Planning is the core functionality of PlanICS 2.0. In this section, we de-
scribe the complete planning process, starting from the user query and going
through all the planning stages.

104 Advances in Software Development

6.4.1. A user query

A task the user expects from the system to perform is given in the form
of a user query specification. It resembles a service definition, i.e., contains
typed objects in the in, inout, and out sets, as well as pre and post formulas
over their attributes. As in the case of the service types, an interpretation of a
user query specification is a pair of world sets. The initial worlds are deter-
mined by objects from in and out, and the pre formula of the query, while the
expected worlds are defined by its in, inout, out, and the post formula.

A user query specification can introduce additional constraints on the
world obtained as a result of composition (the final world) in order to limit the
number of objects of a particular type (cardinality constraint) or aggregated
(by aggregating we mean taking sum, minimal or maximal value) values of
certain object attributes (aggregate constraint). Moreover, a quality function
enables to specify criteria for evaluating the quality of a plan (e.g., the minimal
cost, the minimal time, or some more complicated expression over objects
from the final world).

Thus, every transformation sequence able to transform some initial
world into a final world, which contains some expected world and meets all
the additional constraints, and satisfies the user query, is called a user query
solution.

6.4.2. Abstract planning

The first stage of planning is performed by an abstract planner. Its main
goal is to determine which service types can potentially cooperate to satisfy
the user query, and thereby to reduce the number of interactions with services
in the subsequent planning phases. The planning in this phase looks as follows.
First, the pre and post formulas from the service types and the user query spec-
ifications are converted to abstract formulas. That is, according to a formally
defined transformation, the expressions involving the object attributes are sim-
plified and each attribute value is substituted with the predicate isSet or isNull.
These predicates determine the cases when the value needs to be known or
remains unassigned, respectively. The transformation considers also the rela-
tions between reference attributes of objects and (in part) cardinality re-

 PlanICS 2.0 - a web service composition system… 105

strictions specified in the user query. Then, a search is performed and a context
abstract plan (CAP) is produced. It specifies which service types need to be
applied over which objects, in order to satisfy the user query. By the contexts
we mean mappings between objects in the worlds, and the objects being ser-
vice parameters.

6.4.3. Collecting offers

The next stage of the process consists in collecting offers. This is done
by an offer collector on the basis of the context abstract plan, but using full
(not abstract) condition formulas.

The offer collector communicates with the registered real-world web
services of appropriate types (using their offerBindings to this aim), collecting
offers for each service type present in the context abstract plan. More precise-
ly, the offer collector sends to each appropriate offerBinding the constraints on
the data we are potentially able to sent to the service in the inquiry, and on the
data we expect to receive in the offer in order to keep on building a potential
plan (checking earlier whether these constraints do not contradict the specific
limitations of the service specified in its pre and post in the registry). The
offerBinding program determines, by way of an interaction with the real-world
service, the possible variants of the service execution satisfying the con-
straints mentioned, and returns them in the form of formulas. The pair of for-
mulas, the first of which specifies the actual constraints on the data the real-
world service "agrees" to receive, and the second - the constraints on the data
it declares to return in consequence, is called a proposal of the service.

The offer collector works recursively, using the proposals collected ear-
lier to obtain the next ones, and memorising the bindings between them. The
result of its work is an offer plan of the nodes representing sets of worlds im-
plied by the proposals and mapped to the worlds of CAP, and of the edges
corresponding to real-world services of appropriate types.

106 Advances in Software Development

6.4.4. Concrete planning

The last stage of the planning process is concrete planning, taking an of-
fer plan and finding a concrete plan - i.e., a sequence of real-world services
(corresponding to a CAP sequence) and data to be sent to these services which
form together a scenario maximising the quality function. Potential consecu-
tive phases of planning, such as executing concrete plans or regenerating them
partially when the execution fails, are currently not covered by our research.

6.4.5. Implementation, algorithms

At the current stage of the PlanICS project, abstract planners have been
implemented with the associated infrastructure. Concerning ontology, the
OWL modeling approach is used with available implementations. Two ab-
stract planners have been developed so far: one based on a translation to
Satisfiablity Modulo Theorems (SMT) [7] and another using Genetic Algo-
rithms approach [14]. A generator of benchmarks has been implemented, al-
lowing to scale several parameters such as number of services, maximum
number of processed objects and object attributes, etc.

6.5.Conclusions and future work

PlanICS 2.0 offers a complete solution to automatic web service compo-
sition, distinguished by a multi-stage planning and focused on an easy adapta-
tion to existing models of web services. Our main objective was to create a
reasoning system based on ontologies modelling selected aspects of business
processes, implemented as web services. A flexible semantic model allows to
use the system in various domains in order to achieve a goal - automatic web
service composition. Additional advantages of the approach are a reduction of
the search space by a classification of the services, and dynamic discovering
their capabilities suitable for the created composition. A special attention is
paid to transforming a composition problem to other problems solvable by
well-known effective reasoning methods.

 PlanICS 2.0 - a web service composition system… 107

Comparing PlanICS 2.0 to its previous edition [4, 5], the improvements
consist in: (1) extending the service descriptions by parts related to proxy
communication (inquiry, offer) and relation of the processed world with the
service input and output (assign), (2) introducing a concise multi-proposal
representation of offerBinding, (3) separating between collecting offers and
planning with offers, (4) extending the query language with a restricted quanti-
fication over objects and attributes as well as with a quality measure, (5) defin-
ing a formal conversion from the concrete to the abstract planning domain, and
(6) providing two implementations of the abstract planning engines based on
genetic algorithms and SMT-solvers. The offer collecting and concrete plan-
ning phases are still to be implemented as a next stage of the development.

Acknowledgements

The research described in this chapter has been supported by the National Sci-
ence Centre under the grant No. 2011/01/B/ST6/01477.

Bibliography

[1] S. Ambroszkiewicz. Entish: A language for describing data pro-
cessing in open distributed systems. Fundam. Inform., 60(1-4):41-66,
2004.

[2] M. Bell. Introduction to Service-Oriented Modeling. Wiley & Sons,
2008.

[3] E. Cho, S. Chung, and D. Zimmerman. Automatic web services gen-
eration. In HICSS, pages 1-8. IEEE Computer Society, 2009.

[4] D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Pen-
czek, A. Półrola, and J. Skaruz. HarmonICS - a tool for composing
medical services. In ZEUS, pages 25-33, 2012.

[5] D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Pen-
czek, A. Półrola, M. Szreter, and A. Zbrzezny. PlanICS - a web ser-
vice compositon toolset. Fundamenta Informaticae, 112(1):47-71,
2011.

108 Advances in Software Development

[6] M. Klusch, A. Gerber, and M. Schmidt. Semantic web service com-
position planning with OWLS-XPlan. In Proc. of the 1st Int. AAAI
Fall Symposium on Agents and the Semantic Web, pages 55-62.
AAAI Press, 2005.

[7] A. Niewiadomski, W. Penczek, and A. Półrola. Towards SMT-based
Abstract Planning in PlanICS Ontology. In Proc. of KEOD’13, to
appear, 2013.

[8] OWL 2 web ontology language document overview.
http://www.w3.org/TR/owl2-overwiew/, 2009.

[9] J. Peer. A PDDL based tool for automatic web service composition.
In Proc. of the Second Intl Workshop on Principles and Practice of
Semantic Web Reasoning (PPSWR), pages 149-163. Springer
Verlag, 2004.

[10] S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for web
service composition. In Proc. of the 11st Int. World Wide Web Con-
ference (WWW'02), 2002.

[11] J. Rao, P. Küngas, and M. Matskin. Logic-based web services com-
position: From service description to process model. In Proc. of the
IEEE Int. Conf. on Web Services (ICWS'04), pages 446-453. IEEE
Computer Society, 2004.

[12] J. Rao and X. Su. A survey of automated web service composition
methods. In Proc. of the 1st Int. Workshop on Semantic Web Ser-
vices and Web Process Composition (SWSWPC'04), volume 3387 of
LNCS, pages 43-54. Springer- Verlag, 2004.

[13] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic compositions of
web services using semantic description. In Proc. of the Int. Work-
shop 'Web Services: Modeling, Architecture and Infrastructure'
(WSMAI'03), pages 17-24, 2003.

[14] J. Skaruz, A. Niewiadomski, and W. Penczek. Automated abstract
planning with use of genetic algorithms. In Proc. of GECCO’13, to
appear, 2013.

[15] Web Service Modelling Ontology D2v1.0.
http://www.wsmo.org/2004/d2/v1.0, 2004.

Chapter 7

Test case generation on the base of business rules

described in structural natural language

Requirement specification is a key artefact in any software development pro-

cess. Among others, it may include business rules written in natural language. Re-

quirement specification is the basis for a design and coding of a software system. It is

also used for preparing tests verifying a software product against different kinds of

requirements. Testing artefacts include test cases, mainly created by testers who inter-

pret requirement specification for that purpose. In this chapter an approach to automat-

ic generation of test cases is presented. The test cases are created on the base of busi-

ness rules expressed in a structured natural language, more specifically in SBVRSE

notation. A tool developed for that generates abstract test cases expressed in natural

language in tabular form or as a set of English sentences. Generated test cases are

assumed to support a tester in creation concrete test cases which can be applied for

manual or automatic tests.

7.1.Introduction

Business rules belong to important artefacts of requirement specifica-
tion. On one side they provide definitions of terms used in a specific domain,
on the other – they represent constraints on the structure and behaviour of that
domain. Business rules are usually defined in natural language understandable
for all involved parties. High quality software should be consistent with such
defined business rules.

Checking if the software meets business rules for specific domain is a
concern of software verification [5], and it is usually performed as a part of
dynamic analysis and functional testing. Testing – regardless the way it is done
(manual, automatic) – requires a set of test cases to be prepared, i.e. “a set of
inputs, pre conditions, expected results, and post conditions” [6]. Test cases
can be abstract or executable. Abstract test cases define test inputs and outputs

110 Advances in Software Development

with their specific input values and expected results. For example, supposing
that a component for calculating an average value of two numbers is being
tested, an abstract test case can specify the following values: 6, 14 (test data)
and 10 (test result). Abstract test cases cannot be directly executed against the
subject of testing because they are on a different level of abstraction. That is
the main difference between abstract and executable test cases – the latter can
communicate directly with the subject of testing [1].

In this chapter an approach to automatic test generation of abstract test
cases is proposed. The test cases are generated on the base of business rules
expressed in SBVRSE. Test cases are expressed in natural language and pre-
sented in a form of English sentences or as a table. Such test cases can support
a tester in creation executable test cases which can be applied for manual or
automated tests. The set of business rules considered during the generation
process is limited to structural assertion and integrity constraint rules.

This chapter is organized as follows. Section 7.2 presents the adopted
classification of business rules, and points out those being the subject of gen-
eration. Section 7.3 shortly describes existing testing patterns, from which
some were implemented in generation tool. The architecture of the tool and the
way of its operation is presented in Section 7.4. Section 7.5 contains a case-
study which demonstrates the tool capabilities. Section 7.6 concludes the chap-
ter, and presents directions of further works.

7.2.Business rules

Each organization is a complex organism which has to obey outer or in-
ner regulations, standards, and policies, known as business rules. Business
rules are statements that either define or constrain a specific aspect of organi-
zation functioning [7].

Because business rules are under business jurisdiction and should be
understood especially by that side, they are expressed (especially at the first
stage) in a natural language.

 Test case generation on the base of business rules… 111

7.2.1. Business rules classification

Many different classifications of business rules exist in the literature.
However, we use the classification proposed by Business Rules Group [7].
This classification splits the business rules into 3 categories which are further
divided into subcategories. The presentation below lists all kinds of business
rules but gives short explanations only for those we are interested in:

• Structural assertions:
o Business terms – elements of business glossary that need to be de-

fined, e.g. invoice
o Common terms – elements of business glossary which commonly

known meaning, e.g. car
o Facts – relationships between terms:

o Attribute – a feature on a given term, e.g. colour
o Generalization – represents “as-is” relationship, e.g. car is a

specific case of vehicle
o Participation – represents semantic dependency between

terms, e.g. student enrols for courses
� Aggregation – represents “a whole-part” relationship, e.g.

book consists of pages
� Role – describes way in which one term may serve as an

actor, e.g. customer may be a buyer in a contract
� Association – used when other kinds are inappropriate

• Action assertion – concerns some dynamic aspects of the business
o Division according to class:

o Condition
o Integrity constraint – an assertion that must always be true (in-

variants).
o Authorization

o Division according to type: Enabler, Timer, Executive
o Division according to role: Action Controlling Assertion, Action

Influence Assertion
• Derivation: Mathematical calculation, Inference

112 Advances in Software Development

7.2.2. SVBR and supporting tools

Semantics of Business Vocabulary and Business Rules (SVBR) is an
OMG standard that allows describing business rules in a convenient way (in
semi-natural language) which can be transformed to other representations,
easier for computer processing [8]. SBVR separates the representation of busi-
ness rules from their meaning, what enables adoption of that standard for dif-
ferent natural languages. At that moment only English is supported (SBVRSE
– SBVR Structured English).

SVBR uses two vocabularies. The first – named Vocabulary for describ-
ing business vocabularies – defines all notions from a specific domain (terms
and facts); the second – Vocabulary for describing business rules – static and
dynamic constraints based on previously defined facts and terms.

It is worth to mention that SVBR is flexible enough to specify all ele-
ments from UML class diagram (classes with attributes, associations, and
compositions with multiplicities, generalizations).

Nowadays there are only a few tools supporting SBVR. Mostly they are
text editors, e.g. SBearVeR [9], SBVR Visual Editor [10]. One of the most
interesting is VeTIS [8], elaborated as a plug-in for Magic Draw. It is able to
transform business models defined in SBVR to UML class diagram accompa-
nied with a set of OCL constraints.

7.3.Testing patterns

Testing patterns represent strategies which testers can use during verifi-
cation process. The main popular testing patterns are [1]:
1. Boundary Value Analysis, BVA – used in a context of singular variable

which range of possible values is constrained. In a context of a number
variable VBA suggests checking it with minimal, maximal, one above the
maximal, and one below the minimal values.

2. Equivalence Class Partitioning, ECP – addresses a need of checking po-
tentially big number of input values with a limited number of test cases.
An equivalence class represents such sets of input values which are treated
by an application in similar way.

 Test case generation on the base of business rules… 113

3. Combinatorial Analysis, CA – aims at finding undesirable interactions
among input values. In typical cases, testing of all possible combinations
of such values is impossible.

4. Fuzz testing, FZ – used mainly to check the safety of testing object. This
method checks how the objects react on (big amount of) improper data.

7.4.Proposed approach to test case generation

The approach to test case generation used in the developed tool is an
implementation of Model Based Testing (MBT). MBT organizes the testing
process with four main layers of abstraction [1]: the System Under Test (SUT),
the model of SUT (simplified representation of the test object), the abstract test
case and the concrete test case – see Fig. 7.1.

Fig. 7.1. MBT general scheme

Due to the fact that the approach focuses on using business rules ex-
pressed in SBVR notation our implementation of MBT makes use of two SUT
models. The first one is the SBVR business rules set which gets transformed
into a UML class diagram with additional OCL constraints by Magic Draw
software with VeTIS plug-in. The second SUT model (called the Inner SUT
Model) gets constructed on the fly by the developed tool itself based on the
information retrieved from the input XML file (representation of UML class
diagram). The Inner SUT Model is used as the actual input data for the devel-
oped test case generation algorithm. The proposed approach is presented on
Fig. 7.2.

SUT Model

Abstract
Test Case

Concrete
Test Case

System Under Test

Simplified
representation

Derived from Executed on

Generated on

114 Advances in Software Development

Fig. 7.2. MBT implementation in the proposed approach

The generation algorithm makes use of implemented test patterns
(BVA) and applies them to various aspects of the Inner Model which selected
based on their applicability beforehand. The product of the algorithm is a set
of abstract test cases which can be u
cases.

Inner SUT Model construction
The first phase of test case generation is focused on constructing the I

ner SUT Model based on the input data provided by the class diagram stored
in the XML file. This activity is performed by the

In Inner SUT Model primitive properties are modeled in terms of name,
type, and visibility. Associations are modeled in a similar manner with the
exception that the type which is stored is actually the name of t
other end of the association. Also t
plicity is remembered. The current stage of
associations which are related to the limited
Also the OCL constraints applied to number properties and their values are
processed by File Parser.

Advances in Software Development

.2. MBT implementation in the proposed approach

The generation algorithm makes use of implemented test patterns
(BVA) and applies them to various aspects of the Inner Model which selected
based on their applicability beforehand. The product of the algorithm is a set
of abstract test cases which can be used by testers to produce concrete test

The first phase of test case generation is focused on constructing the In-
Model based on the input data provided by the class diagram stored

is performed by the File Parser component.
rimitive properties are modeled in terms of name,

visibility. Associations are modeled in a similar manner with the
exception that the type which is stored is actually the name of the class at the

he value range for the association’s multi-
. The current stage of implementation focuses on binary

associations which are related to the limited functionality of VeTIS plug-in.
e OCL constraints applied to number properties and their values are

 Test case generation on the base of business rules… 115

Test case generation algorithm
Tests are generated by Test Case Generator component. This compo-

nent uses defined test patterns for that purpose. At that moment Test Case
Generator provides only Boundary Value Analyzer which is an implementa-
tion of the Boundary Value Analysis test pattern. For every analyzed boundary
value two test cases are generated: one which verifies the boundary value
which lies within the accepted range and one which verifies the value exceed-
ing the range. In corner cases, like 0 or * for association multiplicities, tests are
not generated.

7.5.Case study

The proposed method is illustrated with a simple case study elaborated
on the base of [8]. The input for the tools is two basic vocabularies expressed
in SBVRSE.

Vocabulary for describing business vocabularies is presented below (a
part of it).

account

 Definition: a formal contractual relationship established to pro-

vide for regular banking or brokerage or business services; "he asked to

see the executive who handled his account"

account_balance

 General_concept: number

atm

 Definition: Acronym for automated teller machine, a machine at a

bank branch or other location which enables a customer to perform basic

banking activities (checking one's balance, withdrawing or transferring

funds) even when the bank is closed.

balance_check

bank

card

digit

 General_concept: integer

116 Advances in Software Development

This vocabulary contains 15 terms and 18 facts as well as 12 synonyms
for facts.

Vocabulary for describing business rules defined on the base of terms
and facts is defined below (a part of it).

bank controls account

 Synonymous_form: account is_controlled_by bank

user owns account

 Synonymous_form: account is_owned_by user

...

It is necessary that each transaction has exactly one quote.

It is necessary that each withdrawal has exactly one quote.

It is necessary that each quote of_the transaction

is_not_greater_than 1000.

...

This vocabulary contains 28 constraints among which 10 are integrity
constraints.

Both glossaries were rewritten in the VeTIS tool, and imported to the
Magic Draw. Next, the VetTIS tool was used for generation of a UML class
diagram with OCL constraints. The generated diagram was exported to an
XML file.

Depending of the test exporter used, test cases are presented in English
or as a table. The results (part of it) are presented in Fig. 7.3.

For the considered example 57 general test cases were generated. Test
cases come to two groups: those verifying multiplicities of associations, and
those connected to attribute values. Below there is an example of test cases
created for integer attribute, presented in a table 7.1.

Table 7.1. example of test cases created for integer attribute

ID Class Property Value Allowed

54 Withdrawal Quote 1000 Yes

55 Withdrawal Quote 1001 No

56 Withdrawal Quote 1 Yes

57 Withdrawal Quote 0 No

 Test case generatio

Fig. 7.3. General test cases prepared by the tool

7.6.Conclusions

This chapter presents a method to generic test case generation on the
base of business rules expressed in natural language. The proposed approach is
a specialization of MBT, in which SBVRSE specification is treated as original
SUT model. This SUT model is further transformed into an UML class di
gram with OCL constraints, which XML version feeds the developed tool. The
tool uses test patterns (at that moment BVA only) to prepare intermediate test
cases. These test cases are assumed to support testers with test ideas. They can
be also the input for generation of concrete test
constrains (invariants) built upon structural assertions are taken in consider
tion. In the future we plan to extend the set of considered business rules. It
seems that the most promising are authorization rules as well as
rules (preconditions for operations). The case study showed the usability of
proposed approach.

There are several examples in which UML diagrams are used for test
generation [2,3,4] but none of them directly address the problem of business
rules. Typically, SUT model in these approaches is a kind of finite state m
chine. For example in UML-CASTING the space of possible states of testing
model is prepared on the base of class diagram and state machine diagram, but

Test case generation on the base of business rules… 117

7.3. General test cases prepared by the tool

method to generic test case generation on the
base of business rules expressed in natural language. The proposed approach is

cialization of MBT, in which SBVRSE specification is treated as original
SUT model. This SUT model is further transformed into an UML class dia-

hich XML version feeds the developed tool. The
tool uses test patterns (at that moment BVA only) to prepare intermediate test
cases. These test cases are assumed to support testers with test ideas. They can
be also the input for generation of concrete test cases. At that moment integrity
constrains (invariants) built upon structural assertions are taken in considera-
tion. In the future we plan to extend the set of considered business rules. It
seems that the most promising are authorization rules as well as condition
rules (preconditions for operations). The case study showed the usability of

There are several examples in which UML diagrams are used for test
generation [2,3,4] but none of them directly address the problem of business

Typically, SUT model in these approaches is a kind of finite state ma-
CASTING the space of possible states of testing

model is prepared on the base of class diagram and state machine diagram, but

118 Advances in Software Development

state machine diagram is a crucial one [2]. This representation of SUT model
allows generating test cases that transit through possible states of testing mod-
el. The other example of MTB is those presented in [12]. Here test cases are
generated on the base of BPMN diagrams. In this approach SUT model is rep-
resented as a Petri net modeling the space of its states [12]. Our approach to
test generation at that moment uses only static diagrams as SUT model. It can
be changed in the future, when dynamic business rules will be taken into con-
sideration.

Bibliography

[1] Page A., Johnston K., Rollison B.,”How we test software at Mi-
crosoft”, Microsoft Press, 10.12.2008, ISBN 9780735624252

[2] Van Aertryck L., Jensen T.,“UML-CASTING: Test synthesis from
UML models using constraint resolution”, In Proc. AFADL’2003,
http://www.irisa.fr/triskell/AFADL2003/actesAFADL2003/
test04.pdf

[3] Pickin S., Jard C., Traon Y.L., Jéron T., Jézéquel J-M., Le Guennec
A., “System Test Synthesis from UML Models of Distributed Soft-
ware”, IEEE Transactions on Software Engineering, Vol. 33, Iss. 4,
pp. 252-269, 2007

[4] Lugato D., Bigot C., Valot Y., "Validation and automatic test genera-
tion on UML models: the AGATHA approach”, International Journal
on Software Tools for Technology Transfer, Vol. 5, Iss. 2-3, pp. 124-
139, 2004

[5] Graham D., Veenendaal E., Evans I., Black R., “Foundations of
Software Testing: ISTQB Certification“, Cengage Learning Business
Press, 2008

[6] “IEEE Standard Glossary of Software Engineering Terminolo-
gy/IEEE Std 610.12-1990”, Institute of Electrical & Electronics En-
gineering, 1991

[7] “Defining Business Rules - What Are They Really?”, The Business
Rules Group, 2000, http://www.businessrules-
group.org/first_paper/BRG-whatisBR_3ed.pdf

 Test case generation on the base of business rules… 119

[8] “Creating UML&OCL Models from SBVR. Business Vocabularies
and Business Rules. VeTIS User Guide”, Kaunas University of
Technology, 2009

[9] SBeaVeR, http://sbeaver.sourceforge.net/, 2006
[10] “SBVR Visual Editor”, http://sbvrve.sourceforge.net/, 2009
[11] Apfelbaum L., Doyle J.,“Model Based Testing”, Software Quality

Week Conference, Maj 1997,
http://www.geocities.com/model_based_testing/sqw97.pdf

[12] Buchs D., Lucio L.and Chen A., “Model Checking Techniques for
Test Generation from Business Process Models”, Lecture Notes in
Computer Science, Volume 5570/2009.

Chapter 8

Acceptance test generation based on detailed use

case models

Tests performed in order to verify compliance of a software system with
customer expectations cover different areas. Some of them verify the function-
ality, other – the business domain logic, the non-functional characteristics or
the user interface. Usually they are done separately, but on the same functional
areas. This chapter presents the concept for the Requirements Driven Software
Testing (ReDSeT) tool, which allows for automatic integrated test generation
based on different types of requirements. Tests are expressed in newly intro-
duced Test Specification Language (TSL). The basis for functional test genera-
tion are detailed use case models. Furthermore, by combining different types
of requirements, relations between tests are created. The constructed tool
acknowledges validity of the presented concept.

8.1.Introduction

The main goal of a software development project is to deliver a software
product that meets the expectations of the customer. Verification of compli-
ance with the requirements of the stakeholders is possible by carrying out ac-
ceptance tests [1] . Acceptance testing is the process of comparing the system
under development to its requirements and needs of its users. These tests are
performed usually by the customer through comparing the system's operation
to the original contract between the stakeholders and the developers. This con-
tract should be understandable for the stakeholders and at the same time pre-
cise enough for the developers to produce efficient software.

To describe the expected functionality of the software system, use cases
are commonly used [2] . Use cases describe interactions between external ac-
tors and the system, which lead to specific goals according to the given scenar-

122 Advances in Software Development

ios. Such requirements are supposed to be
will be used during acceptance testing.

To improve the development of tests from use cases,
matic test generation mechanisms were proposed.
proaches can be found in work by El
and Nebut et al. [5] . Beside use cases, requirements specification
other types of requirements, that describe different aspects of the desire
ware. These requirements also should be verified by exec
tests. Some work has been done on the generation of tests based on business
rules (see Junior et al. [6]), GUI requirements (s
and even on non-functional requirements (

All these mechanisms use model transformation
Model-based testing (MBT), which is
suite of test cases from requirements
generated from requirement models describing the same software system
ally they are not related, because they verifies

This chapter describes the idea of automatic generation of different
types of tests integrated in functional
during acceptance testing. These tests are generated on the b
requirements describing many aspects of the developed software system,
which makes this idea MBT compliant.
types of testing is the functional test case corresponding to the use case sc
nario as shown in Fig. 8.1.

Fig. 8.1. Acceptance test suite based on functional test cases

This concept is based on the test
cation Language (TSL) and implemented
ments Driven Software Testing). The t

Advances in Software Development

supposed to be satisfactory to define the tests, that
will be used during acceptance testing.

To improve the development of tests from use cases, a number of auto-
matic test generation mechanisms were proposed. Examples of such ap-

work by El-Attar and Miller [3] , Gutiérrez et al. [4] ,
Beside use cases, requirements specifications contain

other types of requirements, that describe different aspects of the desired soft-
ware. These requirements also should be verified by executing corresponding
tests. Some work has been done on the generation of tests based on business

), GUI requirements (see Bertolini and Mota [7]),
functional requirements (see Dyrkom and Wathne [8]).

All these mechanisms use model transformation forming the area of
, which is an evolving technique for generating a

suite of test cases from requirements [9] . Although different types of tests are
models describing the same software system usu-

they verifies different aspects of the system.
describes the idea of automatic generation of different

functional test cases and test scenarios executed
during acceptance testing. These tests are generated on the basis of interrelated
requirements describing many aspects of the developed software system,

makes this idea MBT compliant. The element that integrates different
functional test case corresponding to the use case sce-

. Acceptance test suite based on functional test cases

test metamodel defined as the Test Specifi-
cation Language (TSL) and implemented within the ReDSeT tool (Require-

he tests are generated automatically based

 Acceptance test generation based on detailed use case models 123

on the requirements specification created with RSL (Requirements Specifica-
tion Language) [10] . As RSL gives a notation for precise use case scenarios,
generation of test cases verifying the system behaviour is significantly facili-
tated. Additional information contained in scenario sentences (notions from
the domain vocabulary) and other related requirements allows for generation
of tests of different types. All the tests generated on the basis of RSL-based
requirements form a complete test suite for acceptance testing.

8.2.Detailed requirements expressed in RSL

As in other test generation solutions, the basis for automatic generation
of tests is the precise specification of requirements. As mentioned above, the
described solution is based on the requirements specification created with
RSL. The main features of this language are: clear separation of descriptions
of the system's behaviour and descriptions of the system's domain. Functional
requirements can be presented in three equivalent forms: structured text with
hyperlinks to domain elements, activity diagram and sequence diagram. It
allows for precise specification of requirements, which is understandable even
for ordinary people who do not have technical expertise. The language has a
precise specification of its syntax and semantics [10] with methods of its use
explained e.g. by Śmiałek et al. [11] . Fig. 8.2 shows an example requirements
specification, created in RSL.

All the elements of a requirement specification are grouped in packages
in a tree structure. Simple requirements described with the free text can be
used to define business rules or non-functional aspects of the system. Use
cases describing the functionality of the system are described with structured
scenarios. Scenarios are consist of numbered sentences in a simple grammar
SVO(O). These sentences are constructed with notions stored in the domain
vocabulary. This is illustrated with two scenarios (main and alternative) of the
Edit book use case. The same information is presented in the form of an activ-
ity diagram that is generated automatically from the scenarios.

124 Advances in Software Development

Fig. 8.2. Example of detailed u

The notions are referred to
(book, book list, edit book button, edit book page
tion diagram, that is similar to a class diagram.
tions, and notion operations are defined automatically according to the sc
nario sentences where these notions appear or are defined manually by the
requirements engineer. The notions and
narios describe the business logic and

All the requirements can be related. To depict relation
cases, a special invoke relationship is used. It allows to determine under what
conditions and in which step of a use case scenario another use case is to be
called (see Śmiałek et al. [11] for more details)

RSL is based on a formal metamodel.
essing of information contained in the requirements specification.
this characteristics of RSL for generating test cases.

Advances in Software Development

. Example of detailed use cases expressed RSL

 in scenario sentences through hyperlinks
book, book list, edit book button, edit book page) and are presented on a no-

class diagram. The relationships between no-
and notion operations are defined automatically according to the sce-

nario sentences where these notions appear or are defined manually by the
otions and their operations used in use case sce-

business logic and the user interface elements.
requirements can be related. To depict relations between use

relationship is used. It allows to determine under what
use case scenario another use case is to be

for more details).
metamodel. This allows for automatic proc-

ined in the requirements specification. We will use
this characteristics of RSL for generating test cases.

 Acceptance test generation based on detailed use case model

8.3.Automating test generation

To define acceptance test suite and to ensure accurate and automatic
transition from RSL-based requirements to
(TSL) was developed. This language is based on
(Eclipse Modeling Framework) [

The main idea of TSL is to provide the notation f
are understandable for non-technical
verification of the software system.
named the Test Specification (see
specific release of software. Each test contained in
sents a procedure for software verification
verification is made by examining all

Fig. 8.3. Test generation based on the requirements specification

The basic structure of a TSL test s
Abstract Tests and Concrete Tests
directly from the requirements specification:
other related tests of other types.
includes test scenarios, as shown in

A use case test scenario includes the initial
sentence) that must be met before
scenario and the final condition (
desired state of the system after the scenario

Acceptance test generation based on detailed use case models 125

Automating test generation

To define acceptance test suite and to ensure accurate and automatic
based requirements to tests, Test Specification Language

(TSL) was developed. This language is based on a metamodel defined in EMF
[12] and is out of scope of this chapter.

The main idea of TSL is to provide the notation for reusable tests, that
technical people and precise enough for detailed

verification of the software system. All tests are grouped in a tree structure,
Test Specification (see Fig. 8.3), that groups tests assigned to a

specific release of software. Each test contained in the test specification repre-
sents a procedure for software verification for a single requirement. Such a
verification is made by examining all the check points defined inside a test.

. Test generation based on the requirements specification

The basic structure of a TSL test specification consists of two packages:
Abstract Tests and Concrete Tests. The first of these includes tests generated
directly from the requirements specification: mostly Use Case Tests but also

er types. A use case test corresponds to a use case, and
scenarios, as shown in Fig. 8.3.

cenario includes the initial condition (a precondition
sentence) that must be met before the execution of actions described in this

final condition (a postcondition sentence) that describes the
desired state of the system after the scenario is executed.

126 Advances in Software Development

Every use case test scenario, generated from an RSL use case scenario,
is a sequence of actions forming a dialogue between the primary actor and the
system. Every such action is expressed by a single sentence in a simple sub-
ject-verb-object (SVO) grammar (see Graham [13] for an original idea). These
sentences describing single actions can have check points assigned. In addition
to action sentences, two additional sentence types were introduced: condition
and control sentences. They are used in a scenario to express the flow of con-
trol between alternative scenarios of the same use case as well as between
scenarios of different use cases (see [13]).

An important feature of the requirements specified with RSL, is the pos-
sibility to create relationships between requirements. Due to generation of test
specifications on the basis of these requirements, relationships between tests
are also created. Relations binding use cases depicted as invoke are transferred
to become relations between use case tests. This brings information from
which step of the use case test scenario and under what conditions, a scenario
of another use case test should be called. Other requirements’ relationships are
transferred to relationships binding other tests than use case tests.

8.4.Instantiating concrete tests

A scenario of a use case test determines the conditions, steps and check
points that will be subject to verification for the use case implementation. Such
algorithms will be used in acceptance testing after placing them in test scenar-
ios and assigning specific test data values.

Test scenarios are grouped by the second package in the basic structure
of the test specification (see Fig. 8.4). They are defined by a test engineer as a
set of ordered instances of use case test scenarios, that are named functional
test cases. Functional test case is composed of ordered steps in form of SVO
sentences. Each step can contain check points with assigned test data values
and can be related with test cases of other types. Test cases of other types are
automatically created during instantiation. They are related with functional test
case the same as other tests are related with use case test scenarios and particu-
lar scenario sentences.

 Acceptance test generation based on detailed use case model

Fig. 8.4. Test scenarios composed of concrete test cases

A test scenario constructed with test cases builds also the context for the
test data. The initial test data values are set by
dition values of the test scenario. Test data values describe basic business o
jects as well as GUI elements. The test data in the scope of one test scenario
are passed between test cases as its' precondition and postcondition values.
Test data values are changing according to
logic that are under tests. Although the test cases cannot be formally related to
each other, within the test scenarios they simulate business processes that are
implemented in the system being

Particular use case test scenarios, can be instantiated as test cases in the
scope of other test scenarios with different test values. It makes the tests reu
able.

The described above idea of creating test cases allows for verifying of
system’s application logic. Use case test c
specification. This can be supplemented with other types of testing, such as
business logic, GUI or non-functional tests, depending on the content of the
requirements specification. The extens
attach to the use case test scenario steps other specialized tests. Such a test
specification would be complete for acceptance test

Acceptance test generation based on detailed use case models 127

. Test scenarios composed of concrete test cases

A test scenario constructed with test cases builds also the context for the
test data. The initial test data values are set by the test engineer as the precon-
dition values of the test scenario. Test data values describe basic business ob-
jects as well as GUI elements. The test data in the scope of one test scenario
are passed between test cases as its' precondition and postcondition values.

e changing according to the functionality and the business
logic that are under tests. Although the test cases cannot be formally related to
each other, within the test scenarios they simulate business processes that are
implemented in the system being tested.

Particular use case test scenarios, can be instantiated as test cases in the
scope of other test scenarios with different test values. It makes the tests reus-

escribed above idea of creating test cases allows for verifying of
Use case test cases form the skeleton of a test

can be supplemented with other types of testing, such as
functional tests, depending on the content of the

requirements specification. The extension of the TSL metamodel allows to
attach to the use case test scenario steps other specialized tests. Such a test
specification would be complete for acceptance testing.

128 Advances in Software Development

8.5.Tool support

The tool supporting the described idea of automatic test generation
based on requirements is called ReDSeT (Driver Software Testing Require-
ments). It is based on the Eclipse Rich Client Platform. This enables integra-
tion with ReDSeeDS tool (www.redseeds.eu [14]) which provides advanced
editors for requirements (for use cases, notions and other requirements) de-
scribed with RSL. The generated test specification can be included in the same
Eclipse project as the requirements specification and code. This enables inte-
gration of activities at different stages of the software development project.

ReDSeT tool perspective is divided into several areas. The Test Specifi-
cation Browser allows to manage the test specification, which is organised in a
tree structure. The current test cases and the test scenarios are presented in the
Test Editor area. The Detailed Test View is dedicated for viewing check points
and editing test values contained in all the types of tests.

The tool does not allow to edit the tests generated automatically based
on the requirements. It is expected that all the necessary information about the
check points will be derived from the specification requirements. If there is a
need to clarify the test, the requirements should be modified and then the test
specification should be regenerated. This assures strict compliance of the tests
with the requirements.

The ReDSeT tool is designed as a set of integrated plug-ins, which are
responsible for: automatic generation of tests, test management, use case tests
viewer, test scenario editor for composing sequence of functional test cases
and editors for test data values. Test viewers and test data value editors for
tests of other types may be attached to the tool as the additional plug-ins.

The repository of the test specification is based on the EMF technology.
The TSL metamodel can be easily extended to handle other types of tests
which are adapted to different types of requirements associated with use cases.
As the repository of the test specification XML file is used. It gives the techni-
cal capabilities for easy extraction of test scripts for acceptance tests execu-
tion.

 Acceptance test generation based on detailed use case models 129

8.6.Conclusions

The proposed idea and the ReDSeT tool bring a complete solution for
creating acceptance testing for the systems that are focused on user-system
interaction. The basis for creation of a set of test scenarios are detailed use
cases. Requirements defined in RSL significantly facilitate automatic test gen-
eration, and TSL allows for expressing interrelated tests of different types in a
way that is comprehensible to the audience responsible for acceptance testing.

The automatically generated tests can be re-used in various test scenari-
os. The work on the preparation of the test specification can begin during the
requirements formulation stage, and regeneration of tests allows to reach test
complexity corresponding to detail level of final requirements.

It can be noted that the proposed method is based on black box testing
and is independent of the implementation technology of the system under test.
Since RSL and TSL are based on the metamodels, the whole idea is close to
Model Based Testing. Traces from requirements to test cases are planned to be
used for generating requirements with tests coverage reports. These traces will
be subject to further research on regression test selection.

Relying TSL on the EMF-compliant metamodel and constructing the
ReDSeT tool as an Eclipse plug-ins allows for easy extension of the described
solution. To support another types of tests, the metamodel and appropriate
editor plug-ins should be developed. In the future it is planned to extend the
solution with detailed tests for the business logic and graphical user interface.

It is also planned to extend the tool with the mechanism for extracting of
test scripts as input for tools that automates test execution (e.g. IBM Rational
Functional Tester, Selenium). It would bring a complete solution for detailed
use case based testing.

Bibliography

[1] Myers G. J., Sandler C., Badgett T.: The Art of Software Testing.
Wiley Publishing, 3rd edition, 2011.

[2] Cockburn A.:. Writing Effective Use Cases. Addison-Wesley, 2000..

130 Advances in Software Development

[3] El-Attar M., Miller J.: Developing comprehensive acceptance tests
from use cases and robustness diagrams, RE, 15(3), 285–
306,09.2010.

[4] Gutiérrez J. J., Escalona M. J., Mejías M., Torres J.: An approach to
generate test cases from use cases, ACM, Proc. ICWE ’06, 113–114,
2006.

[5] Nebut C., Fleurey F., Le Traon Y., Jézéquel J.: Automatic test gener-
ation: A use case driven approach, IEEE Transactions on Software
Eng., 32, 140–155, 2006.

[6] Mendes Bizerra Junior E., Silva Silveira D., Lencastre Pinheiro
Menezes Cruz M., Araujo Wanderley F.J.: A method for generation
of tests instances of models from business rules expressed in ocl,
IEEE Latin America Transactions, 10(5), 2105–2111, 2012.

[7] Bertolini C., Mota A.: A framework for gui testing based on use case
design, IEEE, Proc. ICSTW ’10, 252–259, 2010.

[8] Dyrkorn K., Wathne F.: Automated testing of non-functional re-
quirements, ACM, Proc. 23rd OOPSLA Companion ’08, 719–720,
2008.

[9] Dalal S. R., Jain A., Karunanithi N., Leaton J. M., Lott C. M., Patton
G. C., Horowitz B. M.: Model-based testing in practice, ACM, Proc.
ICSE ’99, 285–294, 1999.

[10] Kaindl H., Śmiałek M., Wagner P., Svetinovic D., Ambroziewicz A.,
Bojarski J., Nowakowski W., Straszak T., Schwarz H., Bildhauer D.,
Falb F., Brogan J. P., Mukasa K. S., Wolter K., Kavaldjian S., Szép
A., Kalnina E., Kalnins A.: Requirements specification language def-
inition, ReDSeeDS Project Deliverable D2.4.2, www.redseeds.eu,
2009.

[11] Śmiałek M., Ambroziewicz A., Bojarski J., Nowakowski W.,
Straszak T.: Introducing a unified requirements specification lan-
guage, Proc. CEE-SET’2007, Soft. Eng. in Progress, 172–183.
Nakom, 2007.

[12] Steinberg D., Budinsky F., Paternostro M., Merks E:. EMF: Eclipse
Modeling Framework 2.0, Addison-Wesley Prof. , 2nd edition, 2009.

[13] Graham I. M.: Task Scripts, Use Cases and Scenarios in Object-
Oriented Analysis, Object-Oriented Systems, 3(3), 123–142, 1996.

 Acceptance test generation based on detailed use case models 131

[14] Śmiałek M., Bojarski J., Nowakowski W., Ambroziewicz A.,
Straszak T.: Complementary use case scenario representations based
on domain vocabularies, LNCS, MODELS’07, 4735, 544–558, 2007.

[15] Śmiałek M., Straszak T.: Facilitating transition from requirements to
code with the ReDSeeDS tool, IEEE, 20th Requirements Engineer-
ing Conference, 321–322., 2012.

Chapter 9

Mutation testing of ASP.NET MVC

Mutation testing deals with assessing and improving quality of a test suite for a

computer program. The range and effectiveness of the method depends on the types of

modifications injected by mutation operators. We have checked whether mutation

testing technique can be used to evaluate test cases for ASP. NET MVC-based web

applications. Several new specific mutation operators were created and discussed. The

operator judgment was experimentally verified with the mutation tool implementing

the operators in the Common Intermediate Language (CIL) of .NET. The results show

that mutation testing can be successfully applied to an application running on a web

server, but execution times of functional tests can be long.

9.1.Introduction

Mutation testing is a process that can be used to measure quality of a
test suite for a computer program [4]. It is based on injecting deliberate mis-
takes into the application code and testing the modified program to gain in-
formation about insufficient and missing tests. Algorithms used to create mod-
ifications (mutation operators) can be devoted to general features of a pro-
gramming language such as logical expressions, or object-oriented characteris-
tics. However, specific application technology, such as web processing also
requires comprehensive testing, which could be verified with the mutation
approach. The ASP.NET MVC programming environment was chosen for
evaluation. This framework is a set of libraries for creation of easily-tested
web applications using the Model-View-Controller design pattern [5,11].

We proposed several specialized mutation operators that can be applied
in the ASP.NET MVC applications at the Common Intermediate Language
(CIL) code originated from the C# source code. The operators were imple-
mented in the mutation tool and experimentally evaluated. In experiments two

134 Advances in Software Development

common methods of application testing were taken into account: unit tests and
functional tests run in a web browser.

9.2.Related work

Mutation testing was applied for different general purpose languages as
well as specific domain languages [4]. Mutation operators related to .NET
platform were developed at two code levels, with changes provided into C#
source code or into lower level of the Common Intermediate Language (CIL).

General purpose structural mutation operators are implemented in the
Nester tool [9]. The simple C# code modification rules are defined in regular
expressions or XML document and can result in invalid mutants. The tool is
not further developed. PexMutator [10] cooperates with the Pex extension of
the Microsoft Visual Studio. It injects several structural changes into Interme-
diate Language. The mutated code is verified with tests automatically generat-
ed by Pex. CREAM (CREAtor of Mutants) was the first mutation testing tool
dealing with object-oriented mutation operators for C# programs [1, 2]. Faults
are injected into the C# code in the form of a syntax tree which is an output of
the parser analysis. The current - third version supports 8 standard and 18 ob-
ject-oriented mutation operators of C#. Mutations of Intermediate Language of
.NET for programs originated from C# are introduced by the ILMutator proto-
type [3]. It implements 10 object-oriented and C# specific mutation operators.

Mutation testing was considered for web applications based on the
ASP.NET Web Forms [6]. Though, applications using this former library have
less test facilities and do not support the MVC pattern that is fundamental for
mutation operators aimed at ASP.NET MVC. Advantages and disadvantages
of integration and unit testing of ASP.NET MVC are discussed in [12].

9.3.Mutation operators for ASP.NET MVC framework

The ASP.NET MVC framework is a set of libraries supporting building
of highly testable Internet applications based on the MVC (Model-View-
Controller) architectural pattern [5, 11]. It combines programming paradigms
common to Ruby on Rails, such as conventions over configuration, model

 Mutation testing of ASP.NET MVC 135

binding and code simplicity, with the ASP.NET web technology of Microsoft
(running on .NET framework).

The MVC architectural pattern separates an application into three main
components: the model, the view, and the controller. In the framework, URL
requests are mapped to controller classes and their methods. The controller
handles and responds to user input and interactions. The controller performs
operations on the model, and forwards a response e.g. a view to the user. Ac-
tion methods (also called ‘actions’) are controller methods that can handle
HTTP requests. They are recognized by their return type – deriving from
ActionResult. The platform manages and calls specific actions to handle in-
coming requests.

Views are components providing generic data for presentation of web
pages. In the framework, views are files returned by controller actions. The
files consist of HTML code, combined with the source code of an imperative
language of .NET - usually C#.

Model objects implement the logic for the business data domain. They
often cooperate with the data base that stores the model data.

Separation of components and loose coupling of controllers with the ex-
ecution platform encourage application testability. In unit tests, we can create
controller objects, call their methods and verify results.

Mutation operators devoted to selected features of a programming tech-
nology should take into account various criteria, such as:

• a place of a change can be easily identified in the code,
• a code modification can be straightforwardly realized,
• a modified code is not detected by all tests,
• a mutation mimics a mistake that can be commonly made by a soft-

ware developer.

We propose six new mutation operators for ASP.NET MVC that can be
implemented at the CIL level. Selected mutation operators are illustrated by
examples in the C# code corresponding to actual CIL code on which the muta-
tion operators operate. In other cases code examples are omitted due to brevity
reasons. Full examples are available in the thesis [13]. The following sections
present mutation operators grouped by area of application.

136 Advances in Software Development

9.3.1. Modifications of Model Binding

Values of client requests can be automatically adjusted to action param-
eters. A request is passed to a method if its name is identical to the name of the
action parameter.

CAPN - Change Action Parameter Name is a mutation operator that
changes the name of an action parameter. The name is substituted by a dummy
name such as “mutatedParameterName#”, where # stands for an order number
(Listing 9.1). In consequence, a request value for the action parameter will not
be found during a mutant execution, unless a default value was defined. The
result of this mutation depends on the parameter type. If the parameter is of
reference type, it will be set to null and will probably cause a fault of the
method. In case of a value parameter, an exception will be raised immediately.

This mutation can be easily introduced in the intermediate language. It
is more complicated when applied in the C# code due to usage of optional
parameters. In C# the whole project has to be searched for occurrence of the
method calls (expected in unit tests) in order to ensure a compliable code.

// Before mutation - C# code

public ActionResult Edit(string name) { ... }

// After mutation - C# code

public ActionResult Edit(string mutatedParameterName1) { ... }

Listing 9.1. Example of CAPN operator - Change Action Parameter Name

9.3.2. Modifications of Action Attributes

There are two kinds of C# attributes that are placed before action meth-
ods: method selectors and filters. A programmer can use attributes delivered
by the platform or create their own attributes.

Method selectors are used for identification of an action which will be
executed after a request delivery. One of such attributes is
ActionNameAttribute that changes a default action name, which is the name of
a method, into a given name.

 Mutation testing of ASP.NET MVC 137

Filters make actions to be constrained with additional restrictions. Filter
attributes can be placed before a controller class, thus influencing all actions of
the controller. Among other filters of the framework, we can use
AuthorizeAttribute for an action that has to be authorized, or
HandleErrorAttribute stating what should be done when an exception was
raised.

Attributes have influence on application execution only if it is executed
on a server. Therefore the most obvious tests that verify usage of attributes are
functional tests run in a web browser. Using unit tests a presence and a state of
an attribute can be verified.

SWAN - Swap Action Names could be a mutation operator that swaps
names of two actions through interchange of ActionName attributes. In result,
in all cases when one action should be executed another action is raised. In
order to have a consistent code, both actions should have the same number of
parameters of the same types. Moreover, action names can be checked by a
compiler, e.g. while calling RedirectToAction method, and the mistake can be
easily detected.

RAAT - Remove Authorize Attribute - is a mutation operator that re-
moves Authorize attribute placed before an action or a controller. Therefore
the action or all actions of the controller can be called by an anonymous client.

This mutation checks an important feature of an application concerning
its security. In many programs, it is easy to be applied both in C# and CIL
code. However, Authorize attribute can be extended by inheritance with addi-
tional functionality or other authorization policy. In such cases the removal of
the attribute should be waived.

9.3.3. Modifications of Action Results

An action of a controller returns a value describing a server answer to a
client request. There are different types of such answers inherited from the
ActionResult class, for example: ViewResult - a view is generated,
RedirectResult - redirection of a client to another address, JsonResult - a return
value is in JavaScript Object Notation, FileResult - a file is returned. Methods
of controller support creating of these answers.

138 Advances in Software Development

An application changes its behavior if a value returned by an action is
modified. The mutation is limited for the cases when the return value inherits
from the ActionResult class, which is a typical solution.

RVRA - Replace View with RedirectToAction - is a mutation operator
that changes an object returned by a controller action; RedirectToActionResult
is returned instead of ViewResult (Listing 9.2). The mutation can be detected
by tests that check a type of an object returned by an action.

// Before mutation - C# code

public ActionResult ViewOrRedirect(object obj)

{ return base.View(obj); }

// After mutation - C# code

public ActionResult ViewOrRedirect(object obj)

{ return base.RedirectToAction("Index"); }

Listing 9.2. Example of RVRA operator - Replace View with RedirectToAction

CRAT - Change RedirectToAction Target - is a mutation operator that
changes a target action being a redirection method call parameter. The muta-
tion can be implemented by substitution of a string identifying a target action.

In the selected solution the name is substituted by a dummy action
“MutatedIrrelevantActionName”. Usage of a dummy action is easy to be im-
plemented and it is irrelevant whether the action redirected to exists or not.
The action will not be found and will cause an error when run on a web server.
However in unit tests this will not be the case and a user must check the
ActionResult object for valid action name.

9.3.4. Modifications of Route Mapping

URL routing is used for mapping incoming URL requests to the appro-
priate controllers and their actions. The routing engine parses variables defined
in the URL and the framework passes the parameter values to the controllers.

CMRA - Change MapRoute Address Pattern - is a mutation operator
that changes an URL address. The string defining the URL pattern is substitut-
ed by a dummy one, e.g. “MutatedString”. Therefore the route will be not cor-

 Mutation testing of ASP.NET MVC 139

responding to any incoming request. One of other existing routes will be used
and as a result the appropriate controller might not be found.

The basic rule of the mutation is easily implemented. However, there
are many overloaded forms of the MapRoute method. Extension of the muta-
tion operator to all of them requires investigation of many possible parameter
combinations. The CMRA operator is reasonable for bigger projects with
many routes applied. In a small project a routing mistake can be easily detect-
ed by a developer.

9.4.Experimental evaluation of ASP.NET MVC mutation operators

Mutation experiments on the above discussed mutation operators were
performed with the VisualMutator tool [13]. This tool was developed as a Vis-
ual Studio extension and provides an expansible framework for mutation test-
ing at the CIL level. Tight coupling with the Visual Studio development
framework makes the mutation testing process efficient, as the program under
test is compiled only once and mutants can be generated fast.

Two subjects based on the ASP.NET MVC platform were evaluated in
experiments (Table 9.1). Their open source code is available on the
codeplex.com service. The first subject is NerdDinner [8] - an open source
project that helps Internet people plan get-togethers. It utilizes the authoriza-
tion system based on the Open ID standard and local accounts. The application
also uses Bing search engine, geolocation and RSS feeds. NerDinner is dis-
tributed with a set of unit tests. The second subject of experiments is MVC
Music Store [7] - a store which sells music albums online. This application
was tested with functional test cases that run in a web browser implemented as
control instructions of the WebDriver library.

Table 9.1. Subjects of experiments

 NerdDinner Music Store
 Applic. Test cases Applic. Test cases
LOC without comments 730 461 195 61
Type number 71 20 27 2
Method number 399 156 172 17

140 Advances in Software Development

The basic metrics of the applications and their test cases are summarized
in Table 9.1. The metrics were measured with the NDepend tool. In Music
Store, big samples of exemplary data included in the program were omitted.

Results of the test ability to detect faults injected by the mutation opera-
tors are shown in Table 9.2. In case of NerdDinner mutants of only two opera-
tors were killed by unit tests. Operators RVRA and CRAT modify results re-
turned by actions, which is usually covered by unit tests. Equally important is
verification of route mapping (CMRA) that is not covered by the tests de-
signed for the application. Other mutants are not easily killed by unit tests
unless the reflection mechanism was applied.

Tests of Music Store run were more effective in killing mutants. They
required less code (Table 9.1) but were run in the web browser and took more
time. An average test time of a mutant was equal 1.9 s for NerdDinner with
unit tests run with NUnit, whereas 26.2 s for Music Store mutants run in the
ASP.NET Development Server and functional tests executed with the assis-
tance of VS MsTest.

Table 9.2. Mutation testing results

Mutation
operators

NerdDinner Music Store
mutant number killed mutant number killed

CAPN 25 0 14 7

RVRA 37 22 18 6

CRAT 11 5 10 3

SWAN 15 0 8 6

RAAT 13 0 4 1

CMRA 3 0 1 1

Sum 104 27 55 24

9.5.Conclusions

We have shown how the mutation testing approach can be applied for
the ASP.NET MVC-based web services.

Efficiency of a unit test suite in the respect of the considered mechanism
verification was not very high (mutation score about 26%). However, it is

 Mutation testing of ASP.NET MVC 141

difficult to cover by unit tests all mechanisms utilized by an application run on
a server. Better mutation results (44%) with mutants killed of all fault types
gave test cases run in a web browser but their execution times were signifi-
cantly longer.

In many cases, the functionality of presented operators can be approxi-
mated by standard and object mutation operators for C# language. However it
can be assumed that part of possible programmer error space will not be cov-
ered in that case, due to differences of ASP.NET MVC-based application and
standard desktop application. The specific operators for the platform should
operate on higher level of abstraction, making use of concepts of the platform
and the language. This puts them to good use along standard and object opera-
tors. Nevertheless, usability of each operator should be analyzed to avoid du-
plicating functionality of classic operators.

Some faults, as e.g. injected by RAAT operator, can be easily detected
by test cases run in a web browser. On the other hand simple unit tests do not
kill such mutants, which might be treated as equivalent in their context. These
mutants can be killed by unit tests with the usage of meta-programming tech-
niques, such as reflection, that allow investigating and modifying a program
during its run. An open question remains whether an application has to be run
on a web server or should we accept usage of meta-programming in unit tests.
In the first case, the long execution time might make the entire process impos-
sible to use efficiently with large number of tests or mutants. In the latter case,
interesting consequences of such a decision emerge. The mutant equivalence is
then relative, depending on the testing approach. If we allow the usage of me-
ta-programming techniques, no mutant with changed code can be considered
equivalent, as the modification can always be detected by static analysis and
not program behavior.

The VisualMutator tool is currently extended with selected standard and
object-oriented mutation operators for C# language. It is also planned to be
used in evaluation of automatically developed mutation-based test cases.

142 Advances in Software Development

Bibliography

[1] CREAM – Creator of Mutants,
http://galera.ii.pw.edu.pl/~adr/CREAM/ [access: 2013].

[2] Derezińska A., Szustek A.: Object-oriented testing capabilities and
performance evaluation of the C# mutation system, Szmuc T.,
Szpyrka M., Zendulka J. (eds.), LNCS, vol. 7054, Springer, 2012,
pp. 229-242.

[3] Derezińska A. Kowalski K.: Object-Oriented Mutation applied in
Common Intermediate Language programs originated from C#",
Proc. of IEEE 4th Inter. Conf. Software Testing Verification and
Validation Workshops (ICSTW), IEEE Comp. Soc., 2011, pp. 342 -
350.

[4] Jia Y., Harman M.: An analysis and survey of the development of
mutation testing, IEEE Transactions of Software Engineering, Vol.
37, No. 5 Sep/Oct 2011, pp. 649-678.

[5] Madeyski L., Stochmialek M.: Architectural design of modern web
applications, Foundations of Computing and Decision Sciences, Vol.
30, No 1, 2005, pp. 49-60.

[6] Mansour N., Houri M.: Testing web applications, Information and
Software Technology, vol. 48, issue 1, Jan 2006, pp. 31-42.

[7] MVC Music Store, http://www.asp.net/mvc/tutorials/mvc-music-
store.

[8] NerdDinner, http://nerddinner.com [access: 2013].
[9] Nester, http://nester.sourceforge.net [access: 2013].
[10] PexMutator, http://pexase.codeplex.com/wikipage?title=PexMutator

[access: 2013].
[11] Sanderson S.: Pro ASP.NET MVC 2, Apress, 2010 .
[12] Smirnow A.: Automated testing of ASP.NET MVC applications,

Methods & Tools, Vol. 20, No 1, 2012, pp. 13-18.
[13] Trzpil P.: Mutation testing in ASP.NET MVC, Bach. Thesis, Insti-

tute of Computer Science, Warsaw University of Technology, 2012.

Chapter 10

SOA System Evolution Differential Evaluation

This chapter describes evaluation of SOA implementation in an organization

that consist of two parts - mobile and fixed telecommunication operator. Both parts

started to implement SOA in one point of time using similar procedures and principles.

After a few years of implementations both parts reached different levels of SOA ma-

turity and different results of SOA rollout. The chapter contains differential evaluation

of these implementations. On the basis of the case are examined critical success fac-

tors of SOA implementations and some general observations are concluded.

10.1. Introduction

Service Oriented Architecture [7] reached certain level of maturity and
became reliable approach to integrate complex IT systems. Many organiza-
tions adopted SOA principles and that has created an opportunity to evaluate
real results of implementation of theoretical concepts. This chapter contains a
study of SOA concept implementation in an organization in quite specific cir-
cumstances that enable comparing analysis of evaluation of SOA based sys-
tem. Evolution begins in similar starting points in two similar parts of the or-
ganizations but reaches two substantially different states. The research de-
scribed in this chapter determines success factor of SOA evolution in this par-
ticular situation and states general thesis on SOA evolution.

10.2. Related work

In [2] authors are analyzing different methods of evaluation of software
architecture. Another approach represents SACAM method introduced in [8],

144 Advances in Software Development

that is devoted to compare different architectures. However, none of above
takes into account SOA properties of analyzed architecture.

In [4] authors are presenting benefits of implementing SOA architecture
comparing to non SOA approach on experimental application. Authors are
focusing on technical and architectural benefits. Comparison described in this
chapter concentrates on business benefits of SOA architecture. Business bene-
fits should be expressed in suitable metrics that shows business value that
SOA delivers. Metrics for evaluating SOA quality are described in [5] and [6].

This chapter considers SOA system development as an long-term and
evolutional process. Broader context of such approach is described in [10].

10.3. Organization Context

During the early phase of SOA implementation, the two considering or-
ganizations operated as a separate companies, formally belonging to one capi-
tal group. The first organization was a mobile operator, the second – an opera-
tor of fixed telephony and Internet. A brief summary of the characteristics of
the analyzed organizations actual for the considering moment are presented in
Table 10.1. Although many elements of this two organizations was compara-
ble or even shared in those days – the telecommunication industry, ownership
relations, exchange of personnel – both companies remained different in terms
of internal organization and external relations.

The fixed part "inherited" an extensive organizational structure and re-
sources, not necessarily meeting the actual needs of the business. It was of a
significant meaning to be subject of regulations office, on many issues limiting
freedom of action. The mobile operator started without any burden. The com-
pany was built from the ground up, from the beginning tailored to the needs
arising from the ongoing business model.

Table 10.1. Basic facts about considering companies

 Mobile Fixed

Year of establishing 1991 1991*
Employment in 2005 2730 27500
Clients at the end of 2005 8,5 mln 10,5 mln

* Privatizations of a state-owned company

 SOA System Evolution Differential Evaluation 145

At the start of the implementation of the SOA, the two companies al-
ready had existing IT environment - see Table 10.2. In the area of SOA im-
plementation, the overall level of both companies pursue at this time compara-
ble business functions supported by IT.

Table 10.2. Year of building main IT systems in considering companies

 Mobile Fixed

CRM 2003 – 2005 2002 – 2003
Billing 1997 – 1998 1999 – 2003
Self care 2003 – 2004 2004 – 2005

Customer Domain functions was chosen for the first SOA services. The
implementation of SOA projects in both organizations were very similar – see
Table 10.3.

The CRM environment in the fixed operator was built around a number
of COTS components. The expansion of the CRM solution included integra-
tion with the billing system and with the main networking systems (OSS).
Integration solution was based on IBM MQ Series. Integration services were
used only to implement the functions controlled by the CRM. The environ-
ment was build centrally around CRM.

Table 10.3. Basic facts about SOA development

 Mobile Fixed

Decision about SOA 2002 2003
First group of services
delivered

In 2003 for SMS self-
service area

In 2004 for SelfCare
area

Integration technology Software AG
webMethods 6

Software AG
webMethods 6

Main operational IT
systems covered by
SOA solution

CRM, Billing, OSS,
Self care

CRM, Billing, OSS,
Self care

In the second phase, the implementation of self-service solutions (IVR
and Portal) took place, followed by introducing the second integration plat-
form based on web-Methods EAI. The existing integration services have been
transferred to the new plat-form. Finally, the period of early SOA architecture

146 Advances in Software Development

ended with an integrated environment in which the three major functional ar-
eas (CRM including self-service, billing and OSS) were integrated on a com-
mon integration platform. It is worth noting that the integration services, which
if implemented, largely took the nature of point-to-point. This was due to low
flexibility of major systems (billing, OSS), which prepared own APIs, which
strongly underlined the specificity of their internal implementation. It had a
certain impact on the further development of SOA.

Introducing SOA in the mobile operator had two main phases. The main
objective of the first phase was to build the enterprise integration platform and
the development of a standard method for SOA approach. The effect was the
optimization of the processes using different, heterogeneous IT systems. Addi-
tional value was to gain knowledge of how long it should take to build a new
solution in the context of future projects. Another important result of the work
was to identify the principles of capacity planning for the integration platform.
At that time, methods and standards for SOA solutions was developed and
adopted. In the second phase of the SOA introducing, the integrated environ-
ment has been enhanced with the newly implemented system – CRM. Unlike
the fixed operator, in that case CRM used existing services.

10.4. Results

10.4.1. Architectural perspective

Abstract pattern of SOA can be presented in the form of layered archi-
tecture, as pro-posed by the Open Group (see Fig. 10.1.) [9]. Comparison of
SOA environments will be carried out on the basis of indicators for selected
layers:

• The operating system layer, which includes all custom or packaged ap-
plication assets in the application portfolio running in an IT operating
environment, supporting business activities. Those systems include:
existing applications and solutions package ERP and CRM packages,
custom monolithic existing applications and legacy applications.

 SOA System Evolution Differential Evaluation

• The Service Component Layer, which contains software components,
each of which provides the implementation or realization for services
and their operations, hence t
also contains the Functional and Technical Components that facilitate
a Service Component to realize one or more services.

• The service layer (services) which consists of all the services defined
within the SOA. This lay
descriptions for business capabilities and services as well as their IT
manifestation during design time, as well as service contract and d
scriptions that will be used at runtime.

Fig. 10.3.SOA architecture pattern from the Open Group. Source: [9]

Comparison of the current state of both SOA environments is presented
using two groups of characteristics. The first group includes the basic
measures for SOA architecture:

• number of systems in the environment for Operational Systems Layer
– a system is considered as belonging to the environment, when it pr
vides its functions and/or use of functions of other systems;

• number of services for Services Layer
function of operational system (one or more) that is made available to

SOA System Evolution Differential Evaluation 147

The Service Component Layer, which contains software components,
each of which provides the implementation or realization for services
and their operations, hence the name Service Component. The layer
also contains the Functional and Technical Components that facilitate
a Service Component to realize one or more services.
The service layer (services) which consists of all the services defined
within the SOA. This layer can be thought of as containing the service
descriptions for business capabilities and services as well as their IT
manifestation during design time, as well as service contract and de-
scriptions that will be used at runtime.

SOA architecture pattern from the Open Group. Source: [9]

Comparison of the current state of both SOA environments is presented
using two groups of characteristics. The first group includes the basic

f systems in the environment for Operational Systems Layer
a system is considered as belonging to the environment, when it pro-

vides its functions and/or use of functions of other systems;
for Services Layer – a service is considered as a

function of operational system (one or more) that is made available to

148 Advances in Software Development

consumers (from Business Process and/or Consumer Interfaces La
er);

• number of services reused by at least one consumer
in the process supported by more than one o
10.2 case A);

• number of services realizing point to point integration (between two
operational systems) – occurs when a single feature of one operational
system is available to one other system (see Fig.

• number of services composing functions from a few operational sy
tems for exactly one consumer
ational systems for only one system (see Fig.

Fig. 10.4. SOA measures: A – of service
vices realizing point to point integration; C

operational systems for exactly one consumer

Summary of measurements for bot
ble 10.4.

Advances in Software Development

consumers (from Business Process and/or Consumer Interfaces Lay-

number of services reused by at least one consumer – service is reused
in the process supported by more than one operational system (see Fig.

number of services realizing point to point integration (between two
occurs when a single feature of one operational

system is available to one other system (see Fig. 10.2 case B);
services composing functions from a few operational sys-

tems for exactly one consumer – composing functions of several oper-
ational systems for only one system (see Fig. 10.2 case C).

of services reused by at least one consumer; B – ser-
realizing point to point integration; C – services composing functions from a few

operational systems for exactly one consumer.

Summary of measurements for both environments is presented in Ta-

 SOA System Evolution Differential Evaluation 149

Table 10.4. Main architecture measures

 Mobile Fixed

Operational systems quantity 68 71
Services quantity 462 380
Share of services reused by at least one consumer 59% 29%
Share of services realizing point to point
integration (between two operational systems)

25% 52%

Share of services composing functions from a few
operational systems for exactly one consumer

16% 19%

The second group of measured characteristics concerns the use of ser-
vices during the business processes in the IT environment. The test statistics
have been collected through the EAI infrastructure, during one month period.
The results are presented in Table 10.5.

Table 10.5. Main runtime measures

 Mobile Fixed

All services requests quantity 835 mln 13 mln
Share of requests per most used service 32% 15%
Share of requests per 10 most used services 65% 61,5%
Share of requests per 20 most used services 80% 75,5%

The main difference in runtime measure is visible at the first sight – the

difference in the requests quantities can be observed. Nevertheless, some addi-
tional explanation has to be made. It should be underlined that heavy service
usage in the mobile operator is the consequence of the customers’ usage mod-
el. The mobile customers use the growing number of mobile devices for self
service functions, exposed by the operator. Each of these functions work with
SOA service in the background IT infrastructure. The fixed internet customers
from the fixed operator do not practice the self service functions widely.

10.4.2. Non architectural perspective

Non architectural perspective shows that costs of IT development in
fixed part are significantly higher (per function point) than in mobile part. Also

150 Advances in Software Development

average Time To Market (development time from request to go-live) is much
longer in fixed than in mobile.

There is also meaningful difference in organizational culture between
mobile and fixed part. Mobile part as an organization is generally more agile
and changeable than fixed part.

As parts of one corporation the mobile and fixed have common software
engineering methods, IT development procedures and architectural principles.
There is also centralized enterprise architecture organization that controls both
IT environments.

10.5. Conclusions

Development of SOA based IT system has evolutionary nature. System
evolves by slight changes which superposition in long term builds significant
change. Collected data can help in identification important factors that influent
such evolution.

Service reusability was chosen as main SOA quality metrics. It has
business value justification – the more frequent service is reused the more cost
effective SOA implementation is. From that point of view, better quality of
SOA architecture was gained in mobile part.

Architectural measures presented in Table 10.4 shows that in both or-
ganization, similar effort was put in building services (similar number of ser-
vices), however in fixed part most of services were misused as point-to-point
integration technology. This usage is against to SOA paradigm [7] stating that
service should present agnostic behavior. This observation suggest that im-
proper approach to SOA analysis and design exists in fixed part, because it
does not take into account SOA paradigms but treat services as pure technolo-
gy assets.

Runtime characteristics gathered in Table 10.5 can be partly explained
by difference in behavior of mobile part customers, that was described in sec-
tion 10.4.1. But even taking this fact into account there is still significantly
bigger overall usage of services in mobile than in fixed environment. This fact
can be explained by better design of services that are designed in reusable

 SOA System Evolution Differential Evaluation 151

fashion. Another possible reason is better organized and accessible services
directory in mobile part.

There is clear correlation between architectural and organizational as-
pects of the mobile and fixed SOA evolution results. More agile and adaptive
mobile part is better in using SOA based system and gains better results that
fixed part. But it is not possible to find a causal relationship. This conclusion is
consistent with Architectural Business Cycle [11] that states that architecture
influent business on the same level as business influent architecture.

10.6. Further work

Authors believe that above presented observations are general and can
be applied in any IT environment adapting SOA. Further work on the follow-
ing subject is focused on drilling down data and finding another correlations
and observations on SOA success factors in this particular case.

Another branch of our research is to attempt creating methodology of
comparative evaluation of SOA architecture in organization (or more general
any fashion architecture). Such evaluation can be useful in finding specific
success factors causing that in one part or in one environment SOA is better
than in another. This situation occurs in organizations that parallel develop a
few environments or may have inherited different environment after major
transformations (e.g. fusion of two companies). The methodology should help
to identify disjoint but comparable parts.

Bibliography

[1] Aier S., Bucher T., Winter R, Critical Success Factors of Service
Orientation in Information Systems Engineering, Business & Infor-
mation Systems Engineering, 2011.

[2] Muhammad A. B., Liming Z., Ross J. A Framework for Classifying
and Comparing Software Architecture Evaluation Methods. In Pro-
ceedings of the 2004 Australian Software Engineering Conference
(ASWEC '04). IEEE Computer Society , 2004.

152 Advances in Software Development

[3] Zhou N., Zhang, L.: Analytic Architecture Assessment in SOA Solu-
tion Design and its Engineering Application.. In: ICWS : IEEE, S.
807-814, 2009.

[4] Offermann P, Hoffmann M, Bub U, Benefits of SOA: Evaluation of
an implemented scenario against alternative architectures, Work-
shops Proceedings of the 12th IEEE International Enterprise Distrib-
uted Object Computing Conference, EDOC, 2009.

[5] Karthikeyan T., Geetha J.: A Study and Critical Survey on Service
Reusability Metrics, International Journal of Information Technology
and Computer Science (IJITCS) vol 4, 2012.

[6] Aier S., Ahrens M., Stutz M., Bub U.: Deriving SOA Evaluation
Metrics in an Enterprise Architecture Context. In Service-Oriented
Computing - ICSOC 2007 Workshops, Elisabetta Nitto and Matei
Ripeanu (Eds.). Lecture Notes In Computer Science, Vol. 4907.
Springer-Verlag, Berlin, Heidelberg 224-233, 2009.

[7] Erl T.: SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Prentice Hall PTR,
2007.

[8] Stoermer, C., Bachmann, F., Verhoef, C.:. SACAM: The Software
Architecture Comparison Analysis Method (Technical Report
CMU/SEI-2003-TR-006). Pittsburgh: Software Engineering Insti-
tute, Carnegie Mellon University.
http://www.sei.cmu.edu/library/abstracts/reports/03tr006.cfm , 2003.

[9] The Open Group SOA Reference Architecture, Technical Standard,
The Open Group, 2011.

[10] Zalewski, A., Szlenk, M., Kijas, S.: An Evolution Process for Ser-
vice-Oriented Systems. Computer Science Journal, vol. 13, no. 4, pp.
71-86. AGH University of Science and Technology , 2012.

[11] Bass L., Clements P., Kazman R.: Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.,
1998.

Chapter 11

CoJaq: a hierarchical view on the Java bytecode

formalised in Coq

We present a design for a formalisation of the whole set of 200 Java bytecode

instructions. It consists of a concise set of abstract, generic instructions that can be

specialised to obtain any particular bytecode instruction. In this way one can work

with a manageable set of instructions to prove general facts about the Java bytecode,

but at the same time all the bytecode instructions are available to enable direct verifi-

cation of actual bytecode programs. A considerable part of the design has been real-

ised in Coq proof assistant.

11.1. Introduction

There are many tools to manipulate programs depending on their seman-
tic properties (e.g. program translators, code refactoring tools, code optimisers)
but their trustworthiness is usually based on producer's reputation. In order to
avoid this, but guarantee correctness of such a tool one needs a formalisation
of the semantics of the programming language the tool works with.

In this chapter we provide a detailed and in a considerable part realised
design of a formalisation of the Java Virtual Machine language (JVML) se-
mantics. The key motivation for this project, called CoJaq5, is to create a plat-
form whereboth real programs can be verified and metatheoretical properties
of the language can be shown. In this way the properties are proved about the
same language as the actual programs are verified. Thus the need for model-
ling of the language features, that may lead to inaccuracies or may be impaired
by inadequate treatment of the subject issue, is eliminated.

Formalisation of a real programming language is difficult. It is so since
(a) its informal description spans over hundreds of pages and it is easy to omit

5 Available at http://cojaq.mimuw.edu.pl

154 Advances in Software Development

some details that are surrounded with pragmatic details that have little to do
with the actual behaviour; (b) crucial properties of the language are sometimes
expressed implicitly and should be inferred from hints spread over many
pages; (c) the descriptions in natural language are often ambiguous; (d) forma-
lisation of such large entities easily goes beyond human comprehension so a
non-trivial structuralisation effort is needed to achieve the final result; and (e)
in case interactive theorem provers are used as support, their limitations can be
reached. In fact, such a formalisation effort can be viewed as an implementa-
tion of an interpreter for the subject language in the anguage of the formalisa-
tion, being either set theory, arithmetic or Coq etc. logic. As a result formalisa-
tions require significant effort very similar to the effort of programmers.

The key achievements of the presented formalisation are:
1. Almost full Java bytecode instruction set has been modelled in

Coq. This creates a platform that can be used at the same time to
verify programs and to make feasible metatheoretical proofs for the
language.

2. The semantics is extensive and detailed – although it is not yet
complete, it covers a significant number of instructions and contains
simplified formalisation for all aspects of the JVML in such a way
that it can be extended to cover full functionality in future versions.

3. A static semantic based upon types of values is developed. This
static semantics is proved to be sound and complete with regard to
the dynamic one.

4. We proved a general theorem that programs for which Hoare-style
logic rules apply at each step are partially correct.

The last two features were provided for the instructions that use only
frame runtime structures (i.e. structures such as operand stack and local vari-
ables table, but not heap). We omit their details in the this chapter.

The chapter is structured as follows. Section 11.2 describes the key de-
sign features of our formalisation. In Section 11.3 we report the related work
and we conclude in Section 11.4.

 CoJaq: a hierarchical view on the Java bytecode formalised in Coq 155

11.2. Key Ideas

A formalisation of an industry standard specification for a programming
language is a costly task so it should be done with a particular set of require-
ments in mind. Here is a summary of the requirements we worked with during
the formalisation of CoJaq and their impact on the design.

Multiple specification interpretations The formalisation should take into
account the possibility to interpret the original specification in different yet
plausible ways. The actual implementations of the standard may differ in their
operation since they have taken a different approach on the implementation of
a particular notion described in the specification (e.g. they use a different
scheduler which has the impact on the way programs are executed). The for-
malisation we want to obtain should allow one to prove correct statements that
describe the operation of all plausible implementations.

To obtain this, we use three techniques. First, the semantics is written in
the small-step fashion. The small-step fashion is more appropriate since the
natural language semantics is also formulated in the small-step fashion. More-
over, the formulation of many metatheoretic properties (e.g. immutability,
purity etc.) is easier in this style. Second, the semantics is formalised as a rela-
tion. In this way the semantics we propose can be non-deterministic in places
where the description is, while this would be impossible in case the formula-
tion in the form of function was chosen. Third, we use extensively the module
system of Coq to separate different aspects of the virtual machine (see
Fig. 11.1).

Manageable set of instructions In case a metatheoretical property should
be proved for a system like this, one needs to make many proofs by induction
over the structure of the language. When the language is big one must consider
a big number of cases. This can be avoided when similar instructions are
grouped in a hierarchical structure. With such a layout many cases can be dis-
charged on higher levels of the hierarchy resulting in smaller proofs. We took
this approach in our formalisation and present it in more detail below.

Static semantics The correct operation of the JVML semantics strongly
relies on the assumption that bytecode instructions have arguments of appro-
priate types. Therefore, the operation of each instruction is accompanied by a
careful description of the types for its input and results. In our formalisation

156 Advances in Software Development

we separated the description of the types from the description of the actual
operation of the instructions and provide two different relations for the two
aspects, proving their correspondence. We believe that many proofs can be
simplified due to the choice since they will not have to manage the typing
information.

Hoare-like logic We provided a systematic meth
logic rules in a shallow embedding fashion. In addition we proved a general
theorem that programs for which these rules apply at each step are partially
correct.

Fig. 11.1. Module dependencies in CoJaq

11.2.1. Hierarchy of Instructions

Although the number of bytecode instructions is very large, one can see
that many instructions are similar to one another. We can distinguish the fo
lowing simple situations contributing to the proliferation of instructions.

• A set of instructions performing the same operation for different data
types, e.g. iload, fload, aload
local variable value and pushes it on the operand stack, but a single i

Advances in Software Development

we separated the description of the types from the description of the actual
nd provide two different relations for the two

aspects, proving their correspondence. We believe that many proofs can be
simplified due to the choice since they will not have to manage the typing

We provided a systematic method of using Hoare-style
logic rules in a shallow embedding fashion. In addition we proved a general
theorem that programs for which these rules apply at each step are partially

Module dependencies in CoJaq

Hierarchy of Instructions

Although the number of bytecode instructions is very large, one can see
that many instructions are similar to one another. We can distinguish the fol-
lowing simple situations contributing to the proliferation of instructions.

of instructions performing the same operation for different data
aload, and so on. Each instruction loads a

local variable value and pushes it on the operand stack, but a single in-

 CoJaq: a hierarchical view on the Java bytecode formalised in Coq 157

struction is applicable only to its own type of values (int, float, and
ref, respectively).

• “Shorthand instructions” are defined for some most widely used argu-
ment values, as predicted by the JVML designers. An example could
be the set of instructions iload_0, iload_1, iload_2, iload_3.

• Instructions related to arithmetic and comparison often behave in simi-
lar way and differ only in an arithmetic operator. For example, iadd,
isub, imul, and idiv all perform binary arithmetic operations on in-
tegers. They all pop two operands from the stack and push back one
resulting value.

Each of the aforementioned cases can be simply “compressed” back to a
single parametrised instruction. The examples mentioned in cases 1 and 2 can
be covered by an abstract load instruction parametrised by a data kind (e.g.
int) and a variable number. This one abstract instruction covers 25 JVML

instructions. The case 3 can be factorised into an abstract instruction, paramet-
rised by a data kind and a function on that kind, i.e. an abstract binop instruc-
tion with parameters such as addition, subtraction etc. This factorisation idea
was used e.g. in Bicolano [9], where the number of instructions was reduced
by almost 40%.

In [4] we decided to go one step further and factorise instructions ac-
cording to runtime structures they operate on. We divided JVML instructions
into twelve parametrised abstract instructions. In this chapter, we refine this
approach by organising the instructions into a hierarchy that is also followed
by the definition of operational semantics. The hierarchy is presented
in Fig. 11.2. It is realised in Coq as a number of (non-recursive) inductive
types. The topmost one is TInstruction with 6 constructors: I_Throw,
I_Monitor, I_Invoke, I_Return, I_Heap, and I_Frame. The first four repre-
sent instructions with specific access to JVM data. The fourth one, I_Heap,

represents instructions that operate on the heap without modifying the call
stack (i.e. variants of get, put, new and array access). The fifth one, I_Frame,

represents the largest family of instructions that operate on data in the method
frame at the top of the method call stack of a thread.

158 Advances in Software Development

11.2.2. Hierarchical Definition of Semantic

Our operational semantics follows the hierarchy of instructions. It can
be seen already in a ``big picture'' view of Coq modules, Fig.
structure of modules implementing semantics resembles the hierarchy of i
struction representation. The hierarchy is designed in such a way that the rel
tions defining semantics of abstract instructions which are lower in the instru
tion hierarchy operate on a smaller fragment on the JVM state
cessed by real instructions represented by the abstract one.

Fig. 11.2. Hierarchy of instruction abstract

The hierarchical structure of semantics has at least three advantages.
First of all, it prevents code duplication, as otherwise the
all the I_Frame instructions would have almost identical premises correspon

ing to extracting the suitable fragment of the JVM state. Second, when proving
some properties of the semantics, the necessarily large proof is also hierarch
cally organised and easier to manage than a big monolithic one. Moreover, if
the property at hand is not relevant fo
that many of the irrelevant instructions will be discharged at a high level of
semantic hierarchy, e.g. one would discharge the whole
step relation and not many separate instructions one by

tage is the possibility to develop some proof techniques like VCGen, Hoare
logic etc. only for fragments of the semantics, if the whole semantics is too

Advances in Software Development

Hierarchical Definition of Semantic

Our operational semantics follows the hierarchy of instructions. It can
n already in a ``big picture'' view of Coq modules, Fig. 11.1, where the

structure of modules implementing semantics resembles the hierarchy of in-
struction representation. The hierarchy is designed in such a way that the rela-

tract instructions which are lower in the instruc-
tion hierarchy operate on a smaller fragment on the JVM state – the one ac-
cessed by real instructions represented by the abstract one.

Hierarchy of instruction abstractions

The hierarchical structure of semantics has at least three advantages.
First of all, it prevents code duplication, as otherwise the step relation e.g. for

instructions would have almost identical premises correspond-

the suitable fragment of the JVM state. Second, when proving
some properties of the semantics, the necessarily large proof is also hierarchi-
cally organised and easier to manage than a big monolithic one. Moreover, if
the property at hand is not relevant for a large part of instructions, chances are
that many of the irrelevant instructions will be discharged at a high level of
semantic hierarchy, e.g. one would discharge the whole I_Frame branch of the

relation and not many separate instructions one by one. The third advan-

tage is the possibility to develop some proof techniques like VCGen, Hoare
etc. only for fragments of the semantics, if the whole semantics is too

 CoJaq: a hierarchical view on the Java bytecode formalised in Coq 159

complex to cover. The hierarchical structure of the semantics provides again, a
natural delineation between parts to do and to ignore.

11.2.3. Program Verification

A systematic JVML program verification can be performed in the fol-
lowing way: one writes formulas that describe the states between every two
consecutive bytecode instructions and then proves that starting from a state
satisfying the formula before an instruction if the semantic step of the instruc-
tion is taken then the resulting state satisfies the formula after the instruction.

Consider the program in Fig. 11.3. It consists of initial assignments of
constants to local variables and a loop that calculates the sum of first n odd
numbers, which is equal to n2. Its fragments in CoJaq looks as follows:
Definition code: TCode := codeFromList

 [(∗ 0∗) I_Frame (FI_Stackop (SI_Const KInt zero));

 ...

 (∗ 6∗) I_Frame (FI_Load KInt var0); (∗ start of the loop ∗)

 ...

 (∗18∗) I_Frame (FI_Cond (CI_Goto (offsetFromPosition 6%nat)));

 (∗19∗) I_Frame (FI_Load KInt var2) (∗ after the loop ∗)

 (∗20∗) I_Return (Some KInt) (∗ return ∗)].

First of all, note that labels in bytecode are positions in bytes, whereas
in the Coq they are consecutive numbers. Second, the CoJaq code is paramet-
rised by n, which stands for 50 in Java and JVML. The proof of program cor-
rectness is of course done for arbitrary (but small enough) n.

For the proof we need to express properties describing the state before
instructions of the program, e.g:
Definition s8_prop frame := pcToPosition (frameGetPC frame) = 8%nat

 ∧ existsexistsexistsexists i, existsexistsexistsexists r, stack_values frame [n; i]

 ∧ var_value frame var0 i ∧ var_value frame var1 n

 ∧ var_value frame var2 r ∧ r = i*i ∧ 0 <= i ∧ i <= n.

The above definition says (i) that the program counter of the current
frame is at position 8, (ii) that the values on the operand stack correspond to
the values of appropriate local variables, and (iii) that the abstract loop invari-
ant is satisfied, i.e. r=i*i, where i is in the appropriate range.

160 Advances in Software Development

Once the state properties are defined, we prove a number of lemmas
about transitions, e.g.
Lemma trans_7_8: forallforallforallforall frame frame', s7_prop frame →

 SF.stepFrame code frame frame' → s8_prop frame'.

The proofs consist mostly in unfolding definitions, decomposing co
junctions and inverting inductive relations. They can be largely automated.

After proving transition lemmas, we can establish the partial correctness
of the program, i.e, when it is started in the initial state and arrives after i
struction 19 then the operand stack holds
Theorem partial_correctness: forallforallforallforall frmF,

 pcToPosition (frameGetPC frmF) = 20%nat →

 SF.stepsFrame code frame0 frmF →

 existsexistsexistsexists res,frameGetLocalStack frmF = [(VInt res)] ∧

 Num.toZ res = (n * n).

In this way we proved the desired property of the bytecode program in
Fig. 11.3.

Fig. 11.3. An example of a method. (a) The Java source code of a method, (b) the
corresponding bytecode, and (c) the control flow graph of the bytecode.

Advances in Software Development

Once the state properties are defined, we prove a number of lemmas

frame frame', s7_prop frame →

SF.stepFrame code frame frame' → s8_prop frame'.

The proofs consist mostly in unfolding definitions, decomposing con-
junctions and inverting inductive relations. They can be largely automated.

After proving transition lemmas, we can establish the partial correctness
started in the initial state and arrives after in-

erand stack holds n2:
frmF,

pcToPosition (frameGetPC frmF) = 20%nat →

res,frameGetLocalStack frmF = [(VInt res)] ∧

e proved the desired property of the bytecode program in

An example of a method. (a) The Java source code of a method, (b) the
corresponding bytecode, and (c) the control flow graph of the bytecode.

 CoJaq: a hierarchical view on the Java bytecode formalised in Coq 161

11.2.4. Missing Features in the Formalisation

The current version of CoJaq, does not cover all the details of the lan-
guage. We do not handle all the aspects of advanced multithreading and Java
memory model, 64-bit types, exceptions, and native methods.

In terms of the bytecode instructions, we do not handle at the top level
of the categorisation the cases of I_Throw and I_Monitor. At lower levels of
the formalisation we miss also the formalisation of tableswitch and lookup-
switch, jsr and ret, as well as some of 64-bit instructions.

11.3. Related Work

We only present the most important formalisations here due to the space
limit. A systematic reduction of a large set of JVML instructions to a small one
by means of abstraction was given by Yelland [11]. He proposed a language
µJVM with a modest set of instructions that transform program continuations.
Next, a translation was provided for the actual bytecode instructions. The lan-
guage of µJVM works on a different level of abstraction than CoJaq as in-
structions in CoJaq correspond in a hierarchical way to instructions in the
JVML, while in the case of µJVM a translation is required.

Early efforts to mechanically formalise the JVML was done by Pusch
[10], in Specware project [5], and by Bertot [3]. Leroy [7] proposed a more
mature formalisation. It focuses on JavaCard version of JVML and offers a
Coq formal proof that the JVML verifier preverification procedure are correct.
Klein and Nipkow [6] proposed probably the most extensive work on the
JVML verification. They defined in Isabelle/HOL a model of Java called Jinja
and a formalisation of the JVM language model with 15 instructions covering
low-level control flow, integer numeric operations, classes, arrays, methods,
exceptions, casts, and bytecode subroutines.

A considerable fragment (over 70 instructions) of the JVML was mod-
elled in largely flat fashion by Pichardie [9] in Coq. The work was similar in
spirit to the one of Bertelsen [2] and modelled directly the instructions. The
semantics was done both in the small-step and big-step fashion and the two
were proved equivalent. This was probably the most ambitious and largely

162 Advances in Software Development

successful attempt to make a formal account of the full bytecode instruction
set.

Atkey [1] formalised a fragment of JVML in Coq so that program ex-
traction can be used to extract JVM implementation in Ocaml. In this way it is
possible to efficiently validate the operational semantics in Coq against real
JVMs and test if the results obtained in the two environments agree.

11.4. Conclusions

We grouped in our formalisation the JVML instructions based upon the
way they operate on the runtime structures. In this way we obtained a hierar-
chical decomposition of the Java instruction set and formalised in Coq a big
part of it. We believe that in this way it will be possible to both prove
metatheoretic properties of the JVML and prove correctness of particular pro-
grams. The formalisation consist currently of over 7 KLOC of Coq files.

Acknowledgements

This work was partly supported by Polish government grant N N206 493138.

Bibliography

[1] R. Atkey. CoqJVM: An executable specification of the JVM using
dependent types. Proc. of TYPES 2007, vol. 4941 LNCS, pp 18–32.
Springer, 2008.

[2] P. Bertelsen. Dynamic semantics of Java bytecode. Future Gener.
Comput. Syst., 16(7):841–850, 2000.

[3] Y. Bertot. Formalizing a JVML verifier for initialization in a theorem
prover. Proc. of CAV’01, vol. 2102 LNCS, pp 14–24. Springer,
2001.

[4] J. Chrząszcz, P. Czarnik, and A. Schubert. A dozen instructions
make Java

[5] bytecode. ENTCS, 264(4):19–34, 2011.

 CoJaq: a hierarchical view on the Java bytecode formalised in Coq 163

[6] A. Coglio, A. Goldberg, and Z. Qian. Toward a provably-correct im-
plementation of the JVM bytecode verifier. Proc. of DISCEX ’00. ,
pp 403–410, vol. 2, Los Alamitos, CA, USA, 2000. IEEE.

[7] G. Klein and T. Nipkow. A machine-checked model for a Java-like
language, virtual machine, and compiler. ACM Trans. Program.
Lang. Syst., 28(4):619–695, 2006.

[8] X. Leroy. Bytecode verification on Java smart cards. Softw. Pract.
Exper., 32(4):319–340, 2002.

[9] MOBIUS Consortium. Deliverable 3.1: Bytecode specification lan-
guage and program logic, 2006. Available online from
http://mobius.inria.fr.

[10] D. Pichardie. Bicolano – Byte Code Language in Coq.
http://mobius.inria.fr/bicolano. Summary appears in [8], 2006.

[11] C. Pusch. Proving the soundness of a Java bytecode verifier specifi-
cation in Isabelle/HOL. In Rance Cleaveland, ed, Proc. of TACAS
’99, vol. 1579 LNCS, pp 89–103. Springer, 1999.

[12] Ph. M. Yelland. A compositional account of the Java virtual ma-
chine. In Proc. of POPL’99, pp 57–69, New York, NY, USA, 1999.
ACM.

Chapter 12

Web-based Software Engineering Labs for

Embedded and Cyberphysical Systems

To the memory of Professors
Leon Łukaszewicz,
Zdzisław Pawlak,

Roman Trechciński, and
Władysław M. Turski

This chapter presents an idea of web-based but still hands-on laboratories for

teaching software engineering principles, as implemented in courses on development

of embedded and cyberphysical systems in the Software Engineering Program at Flor-

ida Gulf Coast University. Since the concept of the labs is pretty straightforward and

its technological principles have been outlined in previous publications, the paper

touches upon technology and related pedagogical issues only briefly. Instead, attention

is paid to the motivation for such labs and, even more so, to the significance and con-

sequences of using new technology, in general, and applying it in education, in partic-

ular. Issues related to the concepts of Lewis Mumford’s megamachine, Marshall

McLuhan’s medium as a message, and Clayton Christensen’s disruptive technology

are discussed in relation to the remote labs. Lab’s pervasive and ubiquitous nature

leads to the game changing concept of a lab-by-wire.

12.1. Introduction

In computing disciplines, hands-on software labs have always been es-
sential at all levels of education, whether in computer science, computer engi-
neering, software engineering, or information systems. With the advent of the
Internet, virtual labs became popular allowing students to do work remotely,
without the need of being physically present in the laboratories. However,
virtual labs have been criticized that they were not necessarily effective in

166 Advances in Software Development

courses on embedded, real-time, or cyberphysical and other systems involving
the operation of digital devices controlled by microprocessors or microcontrol-
lers, where observing the effects of the software being developed on the de-
vice’s operation is essential to the learning process.

It is relatively obvious that technology exists today, which allows stu-
dents and other types of users do the software development work in their
homes or offices, or maybe even on their mobile phones, and upload the
executables to the remote devices to run them according to specifications.
However, for a variety of reasons, this is not being done very effectively, or
even actively pursued, in education. The thesis of this paper is that the respec-
tive change in educational practices is imminent, and it will have all signs of
not just a major shift but that of a disruptive move, which will make a dramatic
breakthrough in our lives as educators in computing disciplines.

The paper shows an example of a lab, in which students use a variety of
platforms and networking protocols to develop software remotely to remotely
control various embedded devices, and provides a broader perspective on the
use of similar technologies in contemporary college education..

The rest of the chapter is structured as follows. The remaining part of
this section begins with an overview of remote labs in other engineering and
science disciplines. This is followed by a brief discussion of the nature of em-
bedded/cyberphysical systems and an outline of the motivation for creating
remote labs in software engineering. The next section presents the lab itself, as
developed at FGCU, and outlines briefly the lessons learned and plans for
expansion. The final section addresses the significance of remote labs and
consequences of new technologies for the learning and teaching processes. The
Conclusion section ends the paper.

12.1.1. Remote labs overview

The concept of an online or remote lab is derived from the idea of dis-
tance learning and has been present in education for over twenty years. A re-
mote lab is a physical lab accessible and operated via the Internet. The first
known attempt to address the issue of remote access to lab experiments dates
back to 1991 [1].

 Web-based Software Engineering Labs... 167

Since then online labs have been used in science and engineering cours-
es in a number of disciplines, from physics and chemistry to mechanical and
electrical engineering, and other fields. Multiple survey papers have been pub-
lished over the years [2-6] and two recent volumes of related articles describe
current status of remote labs [7-8].

Fig. 12.1. Architectural components of a remote lab.

A simplified architecture of an online lab is shown in Figure 12.1. Mul-
tiple remote clients can access and potentially control remote devices via the
Internet, utilizing respective network protocols. Device access is scheduled via
their lab servers and respective interfaces, in coordination with traditional web
servers providing Internet connectivity.

Nowadays, such labs are quite widespread in higher education and are
generally divided into three overlapping categories: batch, sensor and interac-
tive labs [8, p. 138]. Batch labs are labs where experiments are completely
defined before the beginning of the experiment and run without additional
intervention of a user. Sensor labs are those labs, which allow for one-way
data transmission, but not full interaction, during experiments, so a user can
monitor or analyze real-time data streams without influencing the phenomena
being studied. Interactive labs are those, in which the user has the ability to
fully interact with the experiment by monitoring and controlling selected pa-
rameters or behavior of the experiment during its execution.

168 Advances in Software Development

These web-based or online labs are also hands-on, although this term
may be a bit confusing. The confusion may be related to the proximity of
equipment and student, implied by the term “hands-on”. Then, of course, the
terms are contradictory. But when one talks about functionality, functions of a
hands-on lab can be provided equally well by a web-based lab, which has been
noticed before by some other authors [9].

From the perspective of Software Engineering, it is crucial to realize
that all types of labs mentioned above are non-invasive, that is, software con-
trolling the experiment never changes, only the parameters of the experiment
can change via the interaction of a user with the experiment control software.

12.1.2. Embedded and cyberphysical systems

Embedded computer systems have their roots in control systems, long
before digital computer control has been conceived [10]. The essential struc-
ture of a simple control system is shown in Figure 12.2. It consists of a con-
troller and a controlled object (commonly termed a plant). The sensor in-
stalled on a plant delivers a measurement signal to the controller, which on this
basis, and a prescribed plan (setpoint), takes a decision what value of a control
signal to apply to an object via an actuator, to counteract potential variations
caused by disturbances.

A typical example of this sort of control system, which we are all famil-
iar with, either from our homes, offices or cars, is a temperature controller,
otherwise known as a thermostat. Historically, the oldest known device, which
applies this type of control principle is the Ktesibios water clock (third century
B.C. [11]), stabilizing the water level to let it flow with constant rate, out of
the tank to another tank at the lower level, to mark the passage of time.

 Web-based Software Engineering Labs... 169

Fig. 12.2. Diagram of a simple control system.

When one relaxes some of the assumptions of a feedback controller, it is
easy to derive the following variations of the control system:

• data acquisition system, when one breaks the control signal line, leav-
ing only the measurement signal reach the controller (then the setpoint
becomes irrelevant);

• programmed controller, when one breaks the feedback loop, leaving
only control signal reach the plant and the setpoint to set parameters
applied to the controller.

Fig. 12.3. High-level model of an embedded/cyberphysical system.

With the development of digital technologies, control systems became
miniaturized and directly embedded into plants, that is, controlled objects. At
the same time, they were expanded to include operator (user) interface, and
their parameter values, such as a setpoint, expanded into more sophisticated

170 Advances in Software Development

data sets, soon to reach the size of true databases. This expanded embedded
control system’s structure is shown in Figure 12.3.

Once it became possible and desirable to implement network connec-
tivity feature in embedded controllers, we have faced a new breed of systems
called cyberphysical systems, which are in fact old embedded control systems
enhanced by connectivity mechanisms. This is reflected in Figure 12.3 by a
network interface.

Thus, for the purpose of this paper, a cyberphysical system can be de-
fined as a computing system with access to physical measurement and control
instruments as well as with connectivity to the Internet. As shown in Figure
12.3, in addition to a physical process and network interfaces, also user and
database interfaces are present.

12.1.3. Motivation and nature of the remote software engineering

lab

While the drive by science and engineering educators to access instru-
ments and experiments remotely has led to a significant progress in designing
and establishing remote labs, it is the fact of the matter that these labs have not
been used in courses in software engineering. In this view, it would make
sense to point out what kind of motivations do exist to implement remote labs
in this discipline. We look into the following four aspects of the motivational
context: professional, educational, innovational and societal.

Professional context. Professional motivation for developing such lab
comes from a combination of two different perspectives: needs of the software
engineering programs and trends in the design and application of embedded
and cyberphysical systems.

First of all, modern software intensive embedded and cyberphysical sys-
tems are applied in the most demanding real-time safety-critical applications,
such as flight control systems, accelerator control, road vehicle control, etc.
They are all distributed and for proper operation require very different pro-
gramming techniques than traditional systems. Typical software engineering
curricula, however, rarely include respective methodologies of software devel-
opment for such systems. If they do, their courses mostly concentrate on the

 Web-based Software Engineering Labs... 171

specification and design aspects of software for distributed systems, but stop
short of including thorough treatment of implementation and testing issues.

Secondly, the need for workforce with respective type of skills has been
documented in professional practice. The most spectacular case had actually
occurred as long ago as in 1997 during the Pathfinder mission to Mars [12]. In
brief, a robotic device, which landed on Mars, got stuck due to an unidentified
software problem, later during the mission recognized as, so called, priority
inversion. Then, engineers at the ground control center corrected the software
and re-uploaded it remotely to the device. This example gives an incredible
boost to the need of acquiring respective knowledge and skills by software
engineers.

Educational context. Well entrenched in their academic positions, col-
lege educators may not realize it, yet, that perhaps in the next decade or two
the universities, as we know them, may disappear from the face of the earth.
Even though this may seem a statement too dramatic to say now, it is certain
that the digital generation will take over, sooner or later.

Both on the earth and in the sky there are clear signs of this threat. In the
sky, that is, in cyberspace, there are very distinctive examples, such as
coursera.com, of a forthcoming overturn in effective teaching on-line.
Thousands of libraries around the world are converging towards a single huge
library named google.com. On the earth, on the other hand, one can quote
numerous articles, from the newspapers, professional magazines and research
journals, on the rapidly growing phenomenon of online learning. Web-based
labs have to become an integral part of this trend.

Societal motivation. It may not be immediately obvious, but it should be
made absolutely clear that the World Wide Web, as we know it now, bas been
created exactly for the purpose of remote access to the labs. The very first
paper published on this technology was written, as an internal report, by two
scientists from the European Organization for Nuclear Research, CERN, in
Geneva, proposing the creation of a protocol, which would allow sharing data
and equipment usage among physicists around the world, working on high-
energy physics experiments [13].

The Large Hadron Collider (LHC) built and operated at CERN, and
known from recent discoveries of the tiniest elementary particles known to the
humankind, has remote control centers, from which one can design and control

172 Advances in Software Development

high-energy physics experiments. An example of such center at Fermilab, near
Chicago, has been described in [14] and is shown in Fig. 12.4

Fig. 12.4. LHC control room at Fermilab (photo by the author).

Innovation context. Among the recent (2012) Top Te
dicted by IEEE Spectrum [15] to likely have the biggest impact in the fort
coming years, there were a number of significant technologies, among them:

• exoskeleton for paraplegics, which would retire a wheelchair solution
• bionic eye that allows the blind to see just with a pair of sunglasses
• 3-D printing that allows creating complicated mechanical structures

without a manufacturing facility
• 3-D chips that would further increase computing speed and power
• 4G Long Term Evolution (LTE) network

the order of magnitude, and more.

What is amazing, however, and sad, is that this and a broader list of
fourteen technological hits does not include any single entry, which would
closely relate to education. This fact must prom
tors to both verify the accuracy of the claims and take respective action.

Need for remote labs. Overall, there is an unquestionable need to create
a software development education laboratory to apply methodologies for i
plementation and testing of embedded and cyberphysical systems, as well as to
enable web-based development and testing (as opposed to traditional local
development), by expanding remote access to operation.

Advances in Software Development

An example of such center at Fermilab, near
[14] and is shown in Fig. 12.4.

. LHC control room at Fermilab (photo by the author).

. Among the recent (2012) Top Ten innovations pre-
dicted by IEEE Spectrum [15] to likely have the biggest impact in the forth-
coming years, there were a number of significant technologies, among them:

exoskeleton for paraplegics, which would retire a wheelchair solution
allows the blind to see just with a pair of sunglasses

D printing that allows creating complicated mechanical structures
without a manufacturing facility

D chips that would further increase computing speed and power
4G Long Term Evolution (LTE) networks that increase bandwidth by
the order of magnitude, and more.

What is amazing, however, and sad, is that this and a broader list of
fourteen technological hits does not include any single entry, which would
closely relate to education. This fact must prompt some response from educa-
tors to both verify the accuracy of the claims and take respective action.

. Overall, there is an unquestionable need to create
a software development education laboratory to apply methodologies for im-

tion and testing of embedded and cyberphysical systems, as well as to
based development and testing (as opposed to traditional local

development), by expanding remote access to operation.

 Web-based Software Engineering Labs... 173

One must remember that the primary objective of a remote software en-
gineering lab is to let students learn by developing software remotely and then
uploading it to the remote devices for testing and debugging. This is signifi-
cantly different from traditional web-based or online laboratories, which only
allow conducting remote experiments, without any changes to software operat-
ing the remote device.

Thus, traditional labs can be called non-invasive, since the student is not
intended to change the software, which runs the instrument or device, perhaps,
with a few exceptions limited to selection of modules but never with complete
change of software running the device.

In software engineering labs, the situation is completely different, be-
cause the essence of a lab is for the student to design, implement and test a
software module on the equipment, accessible locally or remotely. Conse-
quently, the notion of remote lab must be extended by a concept of invasive
labs, where, as in software engineering, new software, good or bad, but devel-
oped by a student, is to be uploaded to the remote instrument or device to let
he student learn software engineering principles to become a professional.

Although the concept of a lab operating this way is not extremely new,
to the author’s knowledge, until now there has been no single course offered in
the U.S. universities, which would involve using such a lab on a full scale
basis.

12.2. FGCU’s web-based software engineering lab

Given the strong motivation for developing the labs, as outlined in the
previous section, a web-based real-time software engineering lab with hands-
on features has been created at FGCU and used on experimental basis in pro-
ject courses. General overview of the lab and its progress has been presented
previously [16-21], so below only a brief summary is given followed by the
lessons learned thus far and an overview of the most recent developments.

The hands-on feature is emphasized, which means that the functionality
of an experiment is preserved whether the lab experiments are done over the
web or with student’s physical presence in the lab.

174 Advances in Software Development

12.2.1. Lab overview

The architecture of the lab follows the one shown in Figure 12.1. A
number of lab stations, interfaced to the Internet through various technologies,
are accessible from web clients. Students obtain access to the stations accord-
ing to schedule via a course webpage. Lab stations are diversified to offer var-
ious technological platforms, to help meet the criteria what lab is best suited to
learn specific concepts.

The assumption in selection of equipment and software for lab stations
is that the platform clearly articulated computing concepts important in em-
bedded and cyberphysical systems. Following this principle, a respective plat-
form has been selected for each station, as illustrated in Table 12.1.

Table 12.1. Summary of Existing Lab Stations

Vendor
Wind

River
Parallax

WDL

Systems

National

Instrum.
Atmel

Hardware PowerPC Multicore Vortex86 Any µC

Bus Serial USB USB Zigbee I2C

OS VxWorks Bare
Windows

CE
Any Bare

Program.

Language
C/C++ TinyBasic C# G C

IDE
Work-

bench
Hydra

Visual

Studio
Labview

AVR

Studio

Protocol FTP/RPC HTTP TCP/UDP
Data

Sockets
HTTP

Web Technol. CGI ASP.NET
.NET

Framework
RT Lab PHP

Application
Device

Testing
GUI

Control

& GUI

Sensor

Network
DAQ

Stations have been designed to cover entire array of embedded and

cyberphysical systems development, including:
• hardware architecture and bus architectures
• operating systems

 Web-based Software Engineering Labs

• programming languages and integrated development environments
• network protocols and web technologies, as well as
• applications.

The essential point in operating all lab stations is their dual interface:
one for operators, which allows conducting experiments or tests just like in all
remote labs described in literature, and another for developers, which would
let uploading the executables and run them over the network.
in Figures 12.5 and 12.6, for a web game development station [19].

Fig. 12.5. Sample screenshot

This station allows development of an Internet game running on an e
bedded computer based on a Parallax multicore chip, installed on a board l
cated in the lab. The operation of the game, which is partially shown on the
interface in Fig. 12.5, involves participation of up to four players connected
via the network to the game server.
screen and score points according to the rules of the game.

When the developer is ready to deploy a new version of the game, or
upload an update fixing the bugs, he can stop the execution warning the pla
ers, first, and then use the developer’s interface shown in Fig. 12.6, for uploa
ing. The interface for this particular station involves uploading the executable,
uploading new images and a modified game manual, if necessary.
lab station has full capability adequate for its use in a course.

based Software Engineering Labs... 175

programming languages and integrated development environments
network protocols and web technologies, as well as

The essential point in operating all lab stations is their dual interface:
one for operators, which allows conducting experiments or tests just like in all
remote labs described in literature, and another for developers, which would

utables and run them over the network. This is illustrated
, for a web game development station [19].

. Sample screenshot of a “Hide and Seek” web game.

This station allows development of an Internet game running on an em-
bedded computer based on a Parallax multicore chip, installed on a board lo-

The operation of the game, which is partially shown on the
, involves participation of up to four players connected

ame server. Each player can move the kid on the
screen and score points according to the rules of the game.

When the developer is ready to deploy a new version of the game, or
load an update fixing the bugs, he can stop the execution warning the play-

first, and then use the developer’s interface shown in Fig. 12.6, for upload-
The interface for this particular station involves uploading the executable,

uploading new images and a modified game manual, if necessary. Thus, the
ability adequate for its use in a course.

176 Advances in Software Development

Fig. 12.6. Example of a developer’s interface for a web game.

12.2.2. Lessons learned

The lab has been in operation for the last three years on an experimental
basis, with a more comprehensive use in a course on Embedde
gramming offered in the Spring 2013 semester.
used as needed in various upper level project courses. For example, teaching
lower level concepts, in a course on Embedded Systems, is well served by the
labs covering hierarchical items listed in
while teaching concepts of cyberphysical systems in a Computer Networks
course is well covered by items in rows (6) through (8) from that table.

During this period, a number of issues cam
been gained, which can be roughly divided into three categories: pedagogy,
technical issues, and administrative and organizational challenges.
observation have been discussed extensively in previous publications [17] an
[19], so here only a handful of problems are mentioned.

Pedagogy. Pedagogy is a crucial factor in offering and use of all eng
neering labs, not only those accessible online.
issues come into play due to the fact that the re
asynchronous.

Advances in Software Development

. Example of a developer’s interface for a web game.

The lab has been in operation for the last three years on an experimental
basis, with a more comprehensive use in a course on Embedded Systems Pro-
gramming offered in the Spring 2013 semester. Overall, lab stations have been
used as needed in various upper level project courses. For example, teaching
lower level concepts, in a course on Embedded Systems, is well served by the

ng hierarchical items listed in rows from (1) to (5) of Table 12.1,
while teaching concepts of cyberphysical systems in a Computer Networks
course is well covered by items in rows (6) through (8) from that table.

During this period, a number of issues came up and experiences have
been gained, which can be roughly divided into three categories: pedagogy,
technical issues, and administrative and organizational challenges. Respective
observation have been discussed extensively in previous publications [17] and
[19], so here only a handful of problems are mentioned.

Pedagogy is a crucial factor in offering and use of all engi-
neering labs, not only those accessible online. In this regard, many different
issues come into play due to the fact that the remote labs are unsupervised and

 Web-based Software Engineering Labs... 177

First, it must be made clear that including the labs in a course enhances
the learning process. This seemed to work for two reasons: (1) the remote labs
speed up the process of acquiring knowledge of concepts and techniques, and
(2) the remote labs broaden the horizons of knowledge in software develop-
ment, because students are forced to include into the picture elements of inter-
actions with multiple additional components, such as networks and people.

Second, emphasis on conducting the later phases of the software devel-
opment cycle, implementation and testing, via the web, makes the learning
process more attractive, because of the opportunity to make actual observa-
tions in real time how the developed software performs.

Third, elements of pedagogy which work in teaching embedded systems
with conventional labs, that is, enforcing knowledge by a sequence of demo,
exercise, assignment and project, do not seem obstructed by the move to web-
based labs.

Ultimately, the question of intellectual value of each project has to be
addressed before it is included in the course: what is the contribution of a lab
to the course objectives? For a discussion of several other observations related
to pedagogy, the reader is referred to [17] and [19].

Technical issues. Numerous technical issues have been identified, which
fall into two major categories: availability of network connections and conti-
nuity of operation. Additional observations related to technical issues can be
found in [17], [19].

Multiple embedded devices with Internet connectivity, which are essen-
tially additional computers on the university enterprise network, constitute
potential vulnerability, which can be exploited by malicious users. For security
reasons, most software ports except port 80 are blocked by network adminis-
trators and computing services. The significance of this problem has not been
anticipated when the project started, and depending on the project’s scale and
scope they must be appropriately addressed sufficiently early in the life cycle.

To provide the continuity of operation of such a lab is an enormous
challenge, due to the (non)-availability of technicians. One solution is to des-
ignate students from senior level courses to become station custodians. This
costs less than full-time technicians and is potentially even more practical re-
garding responsiveness, however, can be considered only as a temporary solu-

178 Advances in Software Development

tion, since students who graduate have to be replaced by the next generation,
and this requires additional time and extra funds for training.

Administrative and organizational challenges. Administrative problems
are also significant and are by nature mostly beyond the control of the lab offe-
rors. The major problem is course enrollment and tuition payment. The nature
of remote labs is to make them available for access from remote locations
worldwide. This fact multiples the number of potential users by a factor hard
to estimate, because anyone with respective prerequisites or academic creden-
tials can become a legitimate user. However, due to the state and university
regulations, students who want to take a course offered with such remotely
accessible lab may face multiple difficulties. There may be many years to
come before this issue will find some satisfactory resolution.

Another significant problem appears to be the training of faculty to in-
clude these labs in their courses. This is related to compensating faculty who
want to participate in the development of such labs. Whether developing or
adopting the lab, the process is challenging and imposes additional burden on
instructors who are willing to face the changing world. It is certain that both
governments and universities have to find ways to fund faculty development to
follow such inevitable trends.

Other administrative and organizational aspects of web-based labs exist,
of which the most important are the following:

• One of the main advantages of web-based labs, opportunity of sharing
equipment, is raising a question of paying for maintenance.

• If the lab is initially playing well its role, there is an essential question
on sustainability to continue operation when the funding period ex-
pires.

• One of the most crucial factors in building and expanding the lab is
faculty motivation, especially critical when external universities are
involved.

• Educating faculty about the benefits and logistics of web-based labs
seems to be necessary. One vehicle to achieve this goal is faculty
workshops.

 Web-based Software Engineering Labs... 179

12.2.3. Evolution of the lab stations

Expansion of the software engineering program by adding new courses
constantly demands development of new contents and new lab stations to satis-
fy course requirements. Additionally, the need of filling the pipeline with high-
quality high school students entering college prompts for teacher training in
respective technologies, which in turn results in adding new stations.

Given that pedagogy is the essential driving factor in every course or lab
design, in case of this project, there are three major educational determinants
of the lab station contents:

• knowledge of software design issues for cyberphysical systems, in-
cluding an appropriate design methodology and design notation;

• principles of remote implementation and remote debugging and testing
of an application;

• remote execution of an application to control a remote device.

These three stages translate directly into the organization of the lab, with
corresponding three different components in mind for adding new stations.

Assuming that two particular topics in embedded and cyberphysical sys-
tems need attention nowadays, robotics and security, respective lab stations
that are meant to address related needs are briefly outlined below.

NAO robot. The robotics device selected for use in lab expansion is the
NAO humanoid robot (Fig. 12.7) [22]. Its development environment named
NAOqi could be used simply to create desktop applications, but with clever
use of new web protocols a web accessible version of the NAO software can
be created at a distance and remotely uploaded to the robot.

WebSockets, which are a new web interface created alongside HTML 5
and supported by most of modern web browsers, provide full duplex commu-
nication between the client and server. This enables a responsive web applica-
tion to use the external server to communicate with the robot’s onboard com-
puter. Voice and image communication are also possible, which open com-
pletely new opportunities in remote robot control and learning.

180 Advances in Software Development

Fig. 12.7. NAO humanoid robot [22].

Raspberry Pi. Embedded systems security has many facets and can be
taught in a number of ways. For this lab, Secure Shell (SSH) and Secure Sock-
et Layer (SSL) protocols have been selected as teaching vehicles. To prepare
the remote system for proper use by students, two components have to be de-
vised accordingly: the target platform and an external device connected to it.

The target platform chosen for this project is Raspberry Pi, a very inex-
pensive credit-card size computer from the non-profit Raspberry Pi Foundation
[23]. It has a number of useful features for an embedded system, including
eight general-purpose input/output (GPIO) pins, with support for I2C, SPI, and
UART protocols, and two USB ports. The Raspberry Pi has support for a few
different operating systems, among them Android and a version of Debian
Linux adapted for the Pi, called Raspbian.

The remote device controlled by the Raspberry Pi is a very simplistic
remote controlled car (Fig. 12.8). It can move forward and backward with
variable speed. The components for the car include a USB Wi-Fi dongle and a
USB webcam for vision (marked by a right arrow), and a number of pins
(marked by left arrow) for attaching external devices, including a motor con-
troller for controlling the speed and direction of the car, etc.

 Web-based Software Engineering Labs

Fig. 12.8

12.3. Significance of remote labs

In addition to the local perspective at the educational institution, where
such labs have tremendous impact on course offers and actual delivery, the
labs have great significance from a broader perspective due to their innovative
nature. It is not enough to answer the typical questions how this type of labs
fits into the educational model. There is a more fundamental question how this
type of phenomenon plays in the historical process of technological and soci
tal change. The current section tries to shed some additional light on the eme
gence of remote labs, discussing the subject from a completely non
points of view.

12.3.1. Megamachines, gigamachines, and more

Observing the speed and pervasiveness with which modern computing
technologies penetrate the society, what immediately comes to mind is the
unprecedented scale of their usage.
to company’s quarterly report, recently reached 1,11 billion per month (March
2013 data), with 665 million acti

based Software Engineering Labs... 181

Fig. 12.8. Pi rover prototype.

ficance of remote labs

In addition to the local perspective at the educational institution, where
such labs have tremendous impact on course offers and actual delivery, the
labs have great significance from a broader perspective due to their innovative

It is not enough to answer the typical questions how this type of labs
There is a more fundamental question how this

type of phenomenon plays in the historical process of technological and socie-
section tries to shed some additional light on the emer-

gence of remote labs, discussing the subject from a completely non-technical

Megamachines, gigamachines, and more

Observing the speed and pervasiveness with which modern computing
ologies penetrate the society, what immediately comes to mind is the

unprecedented scale of their usage. The number of Facebook users, according
to company’s quarterly report, recently reached 1,11 billion per month (March
2013 data), with 665 million active users each day on average in March. As

182 Advances in Software Development

reported by Digitaltrends, the number of active mobile phones will exceed the
world population in 2014, reaching 7.4 billion devices [24]. Even more im-
portantly, from the perspective of embedded and cyberphysical systems, ac-
cording to the Chief Scientist of the U.S. Air Force, by 2025 there will be 7
trillion IP enabled devices in existence [25], all forming a humongous ecosys-
tem that would need a well-educated workforce.

But it’s not only the growing population of devices or users, which is
astonishing and unprecedented. It is also the size of certain individual devices,
which is reaching amazing proportions. To an extent, this issue has been quan-
tified around 70 years ago by Lewis Mumford, with his concept of a megama-
chine [26]. Mumford, himself an inventor, whose first published improvement
appeared over a 100 years ago (Fig. 12.9), used this term to describe the size
of some large-scale endeavors, with an example of building the pyramids.
Referring to this concept he termed it “a shorthand reference to the entire tech-
nological complex”, one that the Egyptians invented for harnessing the man-
power to erect and maintain the pyramids.

In a more contemporary world, the concept of a megamachine is very
fertile and can be applied to devices, such as the Large Hadron Collider, Space
Shuttle, Boeing Dreamliner, etc., but not only in technology, in other sectors of
the society as well. For example, building art objects by Christo and Jean-
Claude, such as the Valley Curtain in Rifle, Colorado, in the early 1970’s, or
wrapping up the Reichstag in the 1990’s or making The Gates in New York
City’s Central Park, in 2005, where they installed 7,503 vinyl gates along 23
miles of pathways have all the symptoms of a megamachine. Thus, the
megamachines are present not only in technology and can be viewed as social
structures or organizations identified by complexity and particular challenges
of scale.

 Web-based Software Engineering Labs... 183

Fig. 12.9. Mumford’s first invention [27].

Incidentally, Mumford quantified the size of a megamachine, using the
prefix “mega”, to reflect the machine’s size, not really intending it but adher-
ing to its meaning as 10^6 components. What was hard to count back then, and
could be only estimated for the pyramids, is much easier to account for in con-
temporary societies.

As stated by Ozaki [28], “A commercial aircraft typically involves
roughly 200,000 parts” – the number probably much lower than number of
parts in Boeing 787 – “ten times more than a car, which involves 20,000
parts.”. It is amazing to see how much the number of car parts has increased
over a century: “In the early 1900’s it took only 700 parts for workers at Ford
Motor Company to produce a Model T.” [29]

Thus, when one speaks of the Internet based endeavors, such as social
networks or mobile phones, the term one could use is gigamachines, and with
the advent of cyberphysical systems it goes into the teramachines territory.
This is where the remote labs have to be placed regarding the size of the ven-
ture, maybe forming a lab cloud, and have to be judged in this context.

Talking further about megamachines as social structures, Mumford
looked closer at the role of a clock across societies and made one very crucial
observation that: “The clock is not merely a means of keeping track of hours,

184 Advances in Software Development

but of synchronizing the actions of men.” Its domination in our lives evolved
over the ages to the point that: “Abstract time became the new medium of ex-
istence. organic functions themselves were regulated by it: one ate, not upon
feeling hungry, but when prompted by the clock; one slept not when one was
tired, but when the clock sanctioned it.”

When the scale goes up, it has a prevailing impact on human behavior.
Thus, clock brings us to “the medium is the message” principle.

12.3.2. The medium is the message

It was Marshall McLuhan who wrote in [30] and later reformulated it in
[31] that:

“Today, after more than a century of electric technology, we have extend-

ed our central nervous system itself in a global embrace […]. Rapidly, we

approach the final phase of the extensions of man – the technological

simulation of consciousness, when the creative process of knowing will

be collectively and corporately extended to the whole of human society,

much as we have already extended our senses and our nerves by various

media.”

In his analysis, glasses are extending our vision, vehicles extend our
legs, printing extended our speech, telegraph, telephone and newer media ex-
tend our nervous system, and electronic media extend our consciousness.

In this view and in relation to these observations he coined the phrase
the medium is the message, arguing that there is a separation between the con-
tent of the medium and the medium itself. What is actually in the contents is
not important, it’s the medium that contains, conveys, and is the message.
What led McLuhan to this observation is his previous study on the printing
press [32]. This is where he formulated the essential thought on the impact of
the invention of printing on the evolution of modern society in western civili-
zation. The advent of the printing press gave rise to the revolution in commu-
nication. Following this, the emergence of a rational thought in Enlightenment
was actually a consequence of introducing the printing press.

In this view, it is easy to state that cell phones, as extension of our con-
sciousness, are determining our behavior. The clock is the technology that has

 Web-based Software Engineering Labs... 185

been enforcing our behaviors for ages. If, indeed, the medium is the message,
the clock’s message is time. The medium impacts the message to the extent
that ultimately it becomes a message itself.

To illustrate how web-based labs are actually moving into this direction,
let’s bring up a simple scenario from a web-based course. When Jim and Joe,
who are taking such a course on Embedded Systems cannot resolve a dispute,
whose program to control a remote robotic arm, in response to an assignment,
is better, they decide to go to a Starbucks coffee shop. Then, they logon to the
robotic device in the lab, upload their programs in sequence, and see whether
Joe’s program, which is moving the arm faster, or Jim’s program, which is
moving the arm not so fast but smoothly, actually meets the requirements more
precisely. What happens is exactly using the medium as the message.

12.3.3. Disruptive technology

When one looks carefully into the evolution of technologies over the
ages, it may be surprising that Lewis Mumford considered the mechanical
clock as the most important invention of mankind and Marshall McLuhan
might have said the same about the invention of a printing press. Both inven-
tions were ranked higher than that of a steam engine. Another interesting ob-
servation, which comes in parallel, is that it is rarely obvious or discussed what
technologies were failing due to the introduction of new inventions.

Bowen & Christensen ([33], p. 43) give the following interesting exam-
ples from the computing field:

IBM dominated the mainframe market but missed by years the emergence

of minicomputers, which were technologically much simpler than main-

frames. Digital Equipment dominated the minicomputer market with in-

novations like its VAX architecture but missed the personal-computer

market almost completely.

The same is true about non-computer companies that missed the boat
when newer technologies became to appear. They include: Sears giving a way
to Walmart, Blockbuster that gave a way to Netflix, newspapers that are get-
ting collectively bankrupt giving a way to digital media, and so on. What we
do not realize is that the same may happen to traditionally viewed universities,

186 Advances in Software Development

which are one of the most conservative institutions on earth, still enjoying their
structures shaped centuries ago.

This brings us to the concept of disruptive technologies, the term intro-
duced in [33]. Generally speaking, a disruptive technology means the technol-
ogy that has a potential to disrupt the markets, because they have not been
prepared for its introduction. The term does not mean just innovation, but in-
novation that has a disruptive impact on the markets.

In a broader perspective, such a disruptive technological event was the
introduction of print by Gutenberg, although it took years to change the mar-
kets, but that was proportionate to the slow pace of adopting innovations at
that time. The same observation can be made about invention of a steam en-
gine, which ultimately led to the industrial revolution. A less obvious example,
not necessarily perceived as a disruptive technology, was the introduction of a
clock, which drastically changed our lives, as noticed by Lewis Mumford.

It is important to note that the concept of a disruptive technology may
have a different meaning depending on the context. For instance, as has been
noticed in [34], Ryszard Kapuściński gives an example of an old technology of
a “cheap, light, plastic container” that had drastically a tremendous impact on
everyday life in Africa [35]. Namely, when plastic containers replaced heavy
metallic vessels to carry water, not only women but also children could carry
them and there were no worries of losing or breaking such, since they could be
immediately replaced.

The nature of the concept has been quickly adopted in computing by
peer-to-peer networks [36] and more recently in the military [37]. As reported
by Keefe [37], among a couple of dozens technologies categorized as disrup-
tive and important to the U.S. military, including night vision systems, auton-
omous robotic devices, free electron lasers, etc., one which is surprisingly
listed as a category is training. This statement gives web-based labs a double
edge: one as a true technological advancement and another as a game-
changing educational vehicle.

 Web-based Software Engineering Labs... 187

12.4. Conclusion

As the data of the U.S. Department of Labor indicate, the projected
growth of the demand for software engineers for the next decade is at the level
of 30%, much faster than the average for all other occupations [38]. A large
part of the profession will have to deal with embedded and cyberphysical sys-
tems, because of their significance to the nation’s wealth and security. Thus, it
makes a big difference whether we educate these engineers with old or new
technologies and how do we shape their attitudes.

The real question we should ask ourselves, as educators, is: How can we
make the existing and forthcoming Internet-based technologies beneficial in
transferring knowledge? How to make sure that they create lasting cultural and
intellectual values? Finding the answers becomes more urgent every day, since
with the advent of mobile phones it appears like the entire world collapsed into
the fifth dimension, the cyberspace. With the pervasive nature of web technol-
ogies and their proliferation, web-based labs can make a dramatic change in
our lives as engineers.

The presented project is original in software engineering and embed-
ded/cyberphysical systems education, because it allows students and develop-
ers not only to operate remotely the lab devices via web interface, but also
program the devices from remote locations and remotely test the software (if
necessary, with a webcam) without ever entering the lab physically. Thus, the
project is game changing, because if such labs proliferate, this will ultimately
cause a significant expansion of the ways students of engineering and compu-
ting disciplines can learn online. If the education market happens to respond to
this challenge, web-based labs may become a new disruptive technology, one
can term lab-by-wire. It may cause a real breakthrough in education, contrib-
uting to the potentially dramatic change one can already observe coming, that
traditional universities will cease to exist.

Although the concept of a lab operating this way is not extremely new,
to the author’s knowledge there has been no single course offered, yet, in the
U.S. universities, which would involve using such a lab on a full scale basis.
This paper, placing remote labs in a broader historical and societal context,
urges the profession to take a closer look at creating fully operational remote

188 Advances in Software Development

labs that allow students to conduct hands-on tasks from a distance, never phys-
ically coming to the lab.

There are, of course, multiple unknowns in the entire endeavor. For ex-
ample, it is unclear from this project whether, in addition to learning specific
concepts of software development, web-based labs help in acquisition of prob-
lem solving skills and application of critical thinking. A more targeted re-
search is needed to lead to specific observations and respective conclusions.

In summary, there is no doubt that as much as the significance of online
education is being recognized in the computing community [39], the signifi-
cance of remote, web-based labs should be also brought to our attention. Both
the interest of the US military [37] and the recent establishing of an IEEE
Working Group 1876 with a mission to develop a standard for online laborato-
ries [40] testify to this fact.

Acknowledgment

This work has been done under grants from the National Science Foun-
dation (NSF), Award No. DUE-0632729 and Award No. DUE-1129437.
Views expressed herein are not necessarily those of the NSF. Additional sup-
port has been provided by a grant SBAHQ-10-I-0250 from the U.S. Small
Business Administration (SBA). SBA’s funding should not be construed as an
endorsement of any products, opinions, or services. Supplementary funding
has been provided by NASA through the Florida Space Grant Consortium and
through Summer 2010 Faculty Fellowship for the author at the Ames Research
Center.

Bibliography

[1] Aburdene M.F., Mastascusa E.J. and Massengale R.: A Proposal for
a Remotely Shared Control Systems Laboratory. In: Proc. FIE’91,
21st Annual Frontiers in Education Conference, Purdue University,
West Lafayette, Ind., September 21-24, 1991, pp. 589-592.

 Web-based Software Engineering Labs... 189

[2] Ma J. and Nickerson J.V.: Hands-on, Simulated and Re-mote Labor-
atories: A Comparative Literature Review. ACM Computing Surveys,
Vol. 38, No. 3, Article No. 7, 2006.

[3] Gravier C., Fayolle J., Bayard B., Ates M. and Lardon J.: State of the
Art about Remote Laboratories Paradigms: Foundations of Ongoing
Mutations. Intern. Journal of Online Engineering, Vol. 4, No. 1, pp.
19-25, 2008.

[4] Cooper M. and Ferreira J.M.M.: Remote Laboratories Extending Ac-
cess to Science and Engineering Curricular, IEEE Trans. on Learn-
ing Technologies, Vol. 2, No. 4, pp. 342-353, 2009.

[5] Guimarães E.G., Cardozo E., Moraes D.H. and Coelho P.R.: Design
and Implementation Issues for Modern Remote Laboratories, IEEE
Trans. on Learning Technologies, Vol. 4, No. 2, pp. 149-161, 2011.

[6] Tawfik M., Sancristobal E., Martin S., Diaz G. and Castro M.: State-
of-the-Art Remote Laboratories for Industrial Electronics Applica-
tions, Proc. TAEE’12, Conference on Technologies Applied to Elec-
tronics Teaching, Vigo, Spain, June 13-15, 2012, pp. 359-365.

[7] Azad A.K.M., Auer M.E. and Harward V.J. (Eds.): Internet Accessi-
ble Remote Laboratories: Scalable E-Learning Tools for Engineer-
ing and Science Disciplines. IGI Global, Hershey, Penn., 2011.

[8] Zubía J.G. and Alves G.R. (Eds.): Using Remote Labs in Education:
Two Little Ducks in Remote Experimentation. University of Deusto,
Bilbao, Spain, 2011.

[9] Bochicchio M.A. and Longo A.: Hands-On Remote Labs: Collabora-
tive Web Laboratories as a Case Study for IT Engineering Classes,
IEEE Trans. on Learning Technologies, Vol. 4, No. 4, pp. 320-330,
October-December 2009.

[10] Zalewski J.: Real-Time Software Architectures and Design Patterns:
Fundamental Concepts and Their Consequences. Annual Reviews in
Control, Vol. 25, pp. 133-146, 2001.

[11] Mayr O.: Zur Frühgeschichte der technischen Regelungen, Olden-
burg Verlag, München, 1969 (English translation: The Origin of
Feedback Control, MIT Press, Cambridge, Mass., 1970).

190 Advances in Software Development

[12] Reeves G.E.: What Really Happened on Mars: Authoritative Ac-
count. URL: http://research.microsoft.com/en-
us/um/people/mbj/mars_pathfinder/authoritative_account.html; 1997

[13] Berners-Lee T. and Cailliau R.: WorldWideWeb: Proposal for a Hy-
perText Project. CERN, Geneva. URL:
http://www.w3.org/Proposal.html; 1990

[14] Harms E. et al.: LHC@FNAL - A New Remote Operations Center at
Fermilab, Proc. ICALEPCS07, Intern. Conference on Accelerator
and Large Experimental Physics Control Systems, Knoxville, Tenn,
October 15-19, 2007, pp. 23-25.

[15] Top Tech 2012. IEEE Spectrum's prediction of the tech that will
make news this year. URL: http://spectrum.ieee.org/at-
work/innovation/top-tech-2012

[16] Zalewski J.: Cyberlab for Cyberphysical Systems: Remote Lab Sta-
tions in Software Engineering Curriculum, Proc. ICEL 2013, 4th In-
tern. Conference on e-Learning, Ostrava, Czech Rep., July 8-10,
2013, pp. 1-7.

[17] Zalewski J.: Web-based Labs for Cyberphysical Systems: A Disrup-
tive Technology. Proc. WCCE2013, 10th IFIP World Conference on
Computers in Education, Toruń, Poland, July 1-5, 2013, Vol. 2, pp.
89-97.

[18] Zalewski J.: Hand-on Software Engineering Labs via the Web: Game
Changing in Online Education. TransNav – Intern’l Journal on Ma-
rine Navigation, Vol. 7, No. 2, pp. 93-100, June 2013.

[19] Zalewski J.: Lab-by-Wire: Fully Web-based Hands-on Embedded
Systems Laboratory, Proc. EDUCON 2013, IEEE Global Engineer-
ing Education Conference, Berlin, Germany, March 13-15, 2013, pp.
928-933.

[20] Zalewski J.: A Comprehensive Embedded Systems Lab for Teaching
Web-based Remote Software Development, Proc. CSEET 2010,
23rd Annual IEEE Conf. on Software Engineering Education &
Training, Pittsburgh, Penn., March 9-12, 2010, pp. 113-120.

[21] Daboin C. and Zalewski J.: Lab Station for Remote Measurement
and Control in Teaching Real-Time Embedded Systems and Soft-
ware Engineering, Proc. WRTP’09, 30th IFAC Workshop on Real-

 Web-based Software Engineering Labs... 191

Time Programming, Mrągowo, Poland, October 10-12, 2009, pp. 43-
48.

[22] Aldebaran Robotics. NAO Humanoid Robot - Key Features. URL:
http://www.aldebaran-robotics.com/en/Discover-NAO/Key-
Features/hardware-platform.html

[23] Richardson M. and Wallace S.: Getting Started with Raspberry Pi,
O’Reilly, Sebastopol, Calif., 2012.

[24] Pramis J.: Number of Mobile Phones to Exceed Word Population by
2014. February 28, 2013. URL:
http://www.digitaltrends.com/mobile/mobile-phone-world-
population-2014/

[25] Maybury M.Y.: Air Force Cyber Vision 2025, Invited Talk, CSIIRW-
8, 8th Cyber Security and Information Intelligence Research Work-
shop, Oak Ridge, Tenn., January 8-10, 2013.

[26] Mumford L.: Technics and Civilization. Harcourt, Brace & Co., New
York, 1934, pp. 12-18.

[27] Mumford L.: Adjusting Device, Modern Electrics, Vol. 3, No. 6, p.
324, September 1910.

[28] Ozaki T.: Open trade, closed industry: the Japanese aerospace indus-
try in the evolution, In: Globalization and Economic Nationalization
in Asia, A.P. D’Costa, Ed., Oxford University Press, 2012, p. 147.

[29] Carbaugh R.J.: International Economics. 14th Edition, Cengage
Learning, Independence, Kentucky, 2011 p. 59.

[30] McLuhan M.: Understanding Media: The Extensions of Man, Men-
tor, New York, 1964.

[31] McLuhan M. and Fiore Q.: The Medium is the Massage. Bantam,
New York, 1967.

[32] McLuhan M.: The Gutenberg Galaxy, Routledge, London, 1962.
[33] Bower J.L and Christensen C.M.: Disruptive Technologies - Catch-

ing the Wave, Harvard Business Review, Issue 2128, pp. 43-53, Jan-
uary 1995.

[34] Mitchell W.J.: ME++ – The Cyborg Self and the Networked City.
MIT Press, Cambridge, Mass., 2003.

[35] Kapuściński R.: Heban, Czytelnik, Warszawa, 1998 (English transla-
tion: The Shadow of the Sun, Knopf, New York, 2001).

192 Advances in Software Development

[36] Oram A.: Peer-to-Peer: Harnessing the Power of Disruptive Tech-
nologies, O’Reilly, Sebastopol, Calif., 2001.

[37] Keefe J.C.: Disruptive Technologies for Weapon Systems, WSTIAC
Quarterly, Vol. 7, No. 4, pp. 3-7, November 2007.

Chapter 13

From relatively isolated system to object approach

– the story of system development & modeling

tools

The very first theoretical approach to the principle of systems and pro-
cesses modeling named relatively isolated system was presented by Henryk
Greniewski in 1956. Farther development of the idea was an introduction of
kind of object techniques to design an information system for Ericson compa-
ny by Ivar Jacobson about 1965. The first implementation of relatively isolated
system in computer programming was carried out for Simula 67 simulation
language. Smalltalk (1976) brought in genuine breakthrough into implementa-
tion of the object ideas into programming languages. Graphical object lan-
guage like UML is a computer aided tool for systems and processes modeling,
developing the prime ideas of relatively isolated system.

13.1. Introduction

Business modeling (generally system modeling) approach with object
oriented technology plays very imported role in today business engineering,
information system design, and so on. The history of it is practically very
short. Early models were built with so called boxes and connecting them into a
set. There were two categories of boxes: one named a black box and the other
white box. The functionality of boxes named as black was not formally de-
scribed or unknown. The name white box concerns boxes with functionality
formally described or known.

In 1956 Henryk Greniewski (from University of Warsaw) presented the
very first theoretical approach to the principle of systems and processes model-
ing introducing the concept of the relatively isolated system [1]. Two years
later, Jay W. Forrester of Harvard University (who earlier specialized in flight
simulation and modeling) published results concerning of usage box technique

194 Advances in Software Development

to simulate behavior of industrial dynamics [2]. The second step was per-
formed by the Swedish team (directed by Ivar Jacobson [3] – information sys-
tem design with prototype of object approach, for Ericson company) around
1965, and the third by the Norwegian team (authors of Simula 67 [4] - exten-
sion of Algol 60, first simulation language proposing concepts of primitive
classes and objects: Ole-Johan Dahl & Kristen Nygaard of Norwegian Compu-
ting Center). Next step in development of the object concepts was the first
object oriented programming language Smalltalk [5]; it was the beginning of
further object oriented programming languages like Java, C# and others. The
languages like UML [6] (Unified Modeling Language) providing options for
modeling of business processes, being under continued elaboration, seem to be
the latest development up to now.

13.2. Relatively isolated systems

 The concept of the relatively isolated system is not new (its definition
was presented in 1956 in Namur at First International Congress of Cybernetics
with further research results published in 1960 [7]); it has been (somewhat
tacitly) used in science for many centuries, at least since the time of
Hippocrates' Corpus, but never presented openly. The need for an overt and at
the same time exact use of that concept is self-evident as regards cybernetics.
Moreover, its precise use is of importance in the logic of induction and the
logic of analogies.

What is implied by that concept? Reference, to an absolutely isolated
system - generally mean a system which:

• is not influenced by the rest of the Universe, and
• exerts no influence on the rest of the Universe (whether any such sys-

tem actually exists is not immediately relevant).

By a relatively isolated system [7] we mean any system (a box or set of
boxes – using above mentioned terminology) and only such which has the
following two characteristics:

• it is influenced by the rest of the Universe, but only in certain specified
ways called inputs, and

 From relatively isolated system to object approach… 195

• it influences the rest of the Universe, but only in certain specified ways
called outputs.

These conceptions, originally so simple, have to be subjected to certain
complications: the influence of the system upon itself (e.g., self-correction) has
to be taken into consideration, involving acceptance of the fact that some (but
not all) outputs of the system may at the same time be inputs (feedback cou-
pling).

The first basic concept considered, then, is that of a relatively isolated
system. The concept of such a system, the notions of input and of output are
abstract notions somewhat difficult to formulate with adequate precision. They
can be formulated precisely if they are treated as what are called "primitive
term", and if a certain set of postulates which infuse meaning into those con-
cepts is adopted. That is to say, they can be formulated precisely by the meth-
od used in elementary geometry to give precision of meaning e.g., to the con-
cepts of point and plane. For our purpose, however, such postulates would be
over complicated; better to do with a somewhat simplified explanation, closing
our eyes to certain essential difficulties.

Every input and every output of a given relatively isolated system is as-
sociated with:

• its calendar, i.e., a certain set moments, or intervals of time, of at list
two elements, and

• its repertory, i.e., a certain set of distinguishable states.

In a given relatively isolated system, every input and every output
adopts one, and only one, distinguishable state in any moment of its calendar.
The function establishing a relation between the elements of the calendar of a
given input (output), and the distinguishable states belonging to the repertory
of that input (output) is called the trajectory of that input (output). Instead of
using the expression “a distinguishable state of an input”, we may use briefly
stimulus, and “a distinguishable state of an output”, we may use shorten to
reaction. It should be stressed - repertory of each input (output) consists of at
least two distinguishable states. To every paired input and output of a specific
system a certain non-negative number of time units is ascribed, representing
the time necessary for the reaction to take place – called reaction time or time-
lag.

196 Advances in Software Development

Four types of relatively isolated systems are introduced: differentiations
are made between reliable and unreliable systems, on the one hand, and pro-
spective and retrospective systems, on the other, each of these dichotomy clas-
sification is independent of the other.

• Prospective reliable systems – the present distinguishable state of any
output is always univocally determined by past and present distin-
guishable states of all the inputs of a given system.

• Prospective unreliable systems - the present distinguishable state of
any output is always univocally determined by past and present distin-
guishable states of all the inputs of a given system, with a constant
probability greater than 50 per cent. The condition is called the princi-
ple of local Pseudo-determinism.

• Retrospective reliable systems – any past (but sufficiently remote from
the present) distinguishable state of any input is always univocally de-
termined by present and past (but not prior to the input state in gen-
eral) distinguishable states of all outputs. The condition is called the
principle of local Para-determinism.

• Retrospective unreliable systems - any past (but sufficiently remote
from the present) distinguishable state of any input is always univocal-
ly determined by present and past (but not prior to the input state in
general) distinguishable states of all outputs, with a constant probabil-
ity greater than 50 per cent. The condition is called the principle of lo-
cal Para-determinism. By a determinator of any output of a given pro-
spective system is meant a function which assigns reaction to stimuli,
and by paradeterminator of any input of a given retrospective system
is meant a function which assigns stimuli to reaction.

If in any system the direction of time is reversed, the inputs replaced by
outputs and the outputs by inputs, then a prospective system becomes a retro-
spective one (and vice versa, a retrospective system becomes a prospective
one). In prospective systems, the present state of the outputs is determined
(logically or probabilistically) by the past and present states of the inputs; in
retrospective systems, the situation is the opposite: the past state of the inputs
is determined by the recent past and present states of the outputs. The theory of
relatively isolated systems is marked by duality: every theorem referring to the
prospective systems has one, and only one - corresponding (dual) theorem

 From relatively isolated system to object approach… 197

referring to the retrospective systems, and vice versa; if one of such two theo-
rems is proved, the other can be proved by simple transformations.

The concept of the theory of relatively isolated system - include princi-
ples of coupling different isolated systems (further called subsystems – equiva-
lent of boxes). Three types of couplings are distinguished: parallel coupling,
serial coupling and feedback coupling of subsystems. Let us take in considera-
tion a pair of subsystems (or two boxes). If two subsystems are in a state of
coupling with each other we have one of situations described below:

• The parallel coupling of two subsystems means one or more pairs of
inputs, in which: (a) the first element of the pair being an input to the
first subsystem and second element of the pair being an input to the
second subsystem had been connected, and (b) the both inputs belong-
ing to the pair have the same repertory.

• The serial coupling of two subsystems means: (a) one output of the
first subsystem is connected to one input of the second subsystem, and
(b) the connected input and output have the same repertory.

• The feedback coupling of two subsystems means: (a) one output of
first the subsystem is connected to one input of the second subsystem,
and (b) one output of the second subsystem is connected to one input
of the first subsystem, and (c) the both connected pairs of input and
output have the same repertory respectively.

The reaction of connected subsystems to feedback activity can be nega-
tive or positive. Negative feedback means of maintaining a state not remote
from that of equilibrium, which often occurs in nature, in technology and in
organized structures. Positive feedback operates opposite to the negative.

It happens that a given system is feedback coupled with itself; i.e., some
of its outputs are at the same time among its inputs. In such – and only – such
cases, we say that system in question is self-coupled. Such case is equivalent
to memory option of the given system. It can be treated as the internal state of
the system.

The analysis of the given existing complex relatively isolated system
aims at identifying its component parts which in turn are simple relatively
isolated systems, and studying couplings connecting them.

Typical synthesis of a relatively isolated system occurs as follows:

198 Advances in Software Development

• the task is to build a new system satisfying certain specified condi-
tions;

• a certain range of simple relatively isolated systems is given;
• the planned system is built by coupling systems belonging to the given

range of simple systems;
• the task sometimes proves insoluble. Then, the compromise solution is

sought: the task is reformulated so as to become (probably) solvable;
for this purpose either the initial conditions are weakened or the given
range of simple systems is augmented;

• there are often more solutions than one. In such a case, all the solutions
are usually studied and the optimum one chosen (from the point of
view of costs, efficiency, speed of operation, etc.).

Since the term model has many different meaning it seems advisable to
define in which sense it will be used here. Let us assume that a certain relative-
ly isolated system is given which will be called the original. By model, we
shall here mean a system which is as little complicated as possible and which
functions in a manner analogous to the original. Model construction will mean
the designing or physical construction of a model.

13.3. The object oriented model

The object model has been proven as applicable to in a wide variety of
problem domains [8] (Air traffic control, Animation, Command and control
system, Computer integrated manufacturing, Office automation, Robotics,
User interface design, and so on). Object oriented approach is based on a num-
ber of ideas:

• Object is the relatively isolated system (the object is encapsulated)
with its attributes and methods.

• Attributes represent internal states of the object. The data of internal
states are used to remember values characteristic for object.

• Contacts are possible only with object content by interfaces (in-
put/outputs) of the object. Each interface of the object is bound with
one or more methods of the object.

 From relatively isolated system to object approach… 199

• Methods represent internal functionality of the object (they perform
transformation of input messages – supplied by an interface and attrib-
utes into output messages and new values of attributes). The objects
with methods controlling their behavior (for example object meets
homeostatic conditions), are named self-controlled or active objects.
The other objects type, are named passive objects – they need external
control provided by other object or objects.

• Objects belong to families named classes. Each class can be treated as
a pattern to create objects. Number of objects belonging to the given
class can change from one (singleton family) to many. Sets of attrib-
utes and methods and interfaces are the same for all objects created
and belonging to given class.

• Two objects can connect (coupled) each other if they possess the same
interface. All objects belonging to same class have the same interface.
In case they belong to different classes they can use additional external
interface with the given implementation. It should be noticed, each ob-
ject can implement different interfaces. Therefore, object needs to be
supplemented with the interfaces as a tool for objects interconnecting.
Additional interface (which can be added to an object) is bound with
one or more methods. Each method has name only without its imple-
mentation. Therefore it is called abstract method.

• Interface of given name can have different implementation (for exam-
ple “to open” has one implementation for door opening and second
implementation for barrel opening – the name of method is the same
but its implementation differs). Some specialists call this property pol-
ymorphism.

• The inheredity of classes (or interfaces) gives the possibilities to ex-
tend both attributes and methods. The derivate class has attributes and
methods of its parent class and additional ones created by operation of
inheredity.

• Connectivity between objects (so called association) is possible if both
objects has the same type of interfaces (it concerns both method and
its implementation), as was noticed above. Objects can be associated
one to one, or one to N, or M to N. Communication between associated
objects is performed by the message. Each message contains data (pa-

200 Advances in Software Development

rameters) and calls for a method or methods in an addressed object.
Message obtained by the object sets new data for some attributes and
causes performance of one or more indicated methods. As a result of
performed one or more methods, the object generates message con-
taining the values of some attributes and can send it back to the object
source of previous message.

• Security options controls users’ rights for change values of attributes
and call methods. If an option public precedes name of a class, an ob-
ject, an attribute or a method – it means that the name is accessible and
visible for each user. If an option private precedes name of a class, an
attribute or a method – it means that the name is accessible and visible
for user having rights access to given name. The last option protected
precedes name of a class, an object, an attribute or a method – it means
that the name is accessible and visible for user having rights access to
given name and their heritages. An additional security option is final –
it blocks operation of inheredity of a class, an object, an attribute or a
method. The final precedes a name of a blocked element.

• White box technique – means use of inheredity of classes or interfaces
because a derivative class has known structure and implementation. It
is a static technique.

• Black box technique – means use of composition of objects belonging
to different classes. In this technique a message is sent from one object
to another – both objects have the same interfaces. Such a message ac-
tivates corresponding method of the destination object. The object’s
composition can be built from a string objects belonging to different
classes. It is a dynamic technique.

13.4. Introduction to the development of the object approach

Objects are omni present. Starting from the late 1960s with program-
ming languages such as Simula 67, they have pervaded every domain of soft-
ware technology. So why have objects proliferated like a contagious virus? At
least for two reasons:

 From relatively isolated system to object approach… 201

• First, objects are good abstractions of real-world entities, thus are ideal
for modeling of , distributed systems,

• Second, objects can yield suitable components for fostering modularity
and re-use in building quality, complex applications.

However, object orientation is not a panacea that can cure all design and
development problems. There is still considerable confusion and controversy
for such key concepts as encapsulation, inheritance and polymorphism. There
is no complete theory of object orientation, based on simple and well-defined
concepts as well. Some theories (i.e. Abadi and Cardelli’s – Sigma Calculus)
proposing understanding of objects have emerged, but they are incomplete,
concentrating on a few aspects such as polymorphism and overriding only.

Thus, object orientation is more an engineering approach than a well-
founded science [9]. But it is rich enough to help solve problems in many do-
mains, including user interface, programming, modeling, re-use and co-
operation. The central concept in the object approach is that of the object; an
object associates data and processes in to single entity, leaving only the inter-
face - that is the operations that can be performed on the object - visible from
outside. This approach is not new; it first appeared in the language Simula,
designed as a Structured programming language for simulating parallel pro-
cesses. The classes of Simula made abstraction possible by hiding the imple-
mentation and creating increasingly complex entities. The abstract aspect of
the object approach, which enables a data structure to be hidden by the allow-
able operations for that structure, was formalized in the 1970s in the theory of
abstract data types. The basic idea is to define a set of functions (for example
the stack functions push, pop and top) for manipulating a set of types (for ex-
ample stacks of integers) and to give a formal specification of these and of
their relations as a set of axioms, leaving any implementation to be decided
later.

In parallel with this formalization of abstract types, the language Small-
talk was developed; this, like Simula, implemented the object concept in the
form of classes but in addition brought in message passing, taken from the
actor concept. Smalltalk used in terms of generalization concept of inheritance
to structure the classes hierarchically. Smalltalk was the real source of inspira-
tion for the object approach; it was in the course of its development that the

202 Advances in Software Development

idea of a multi-window system, with graphical objects dragged in and dropped
out, first arose.

Three classes Model/View/Controller (named MVC) were used to con-
struct user interface in Smalltack-80. After Smalltalk-80 the relations between
generalization and inheritance were developed extensively in so called design
patterns [10]. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
suggested that practically the number of important patterns is limited [10].
They operated on three groups of patterns for creation, structures and activates,
altogether 23 patterns only. Survey of Software Pattern Collections by Scott
Henninger & Victor Corrêa [11], worked out nearly 15 years later - shows
existences of 170 pattern entities (collections and individual patterns not in a
collection) with a total of 2,241 patterns. Hopes concerning usage of design
patterns to construct application software have been overestimated. Object
approach gives new ideas to analyzing and designing of information systems.
The new methodology of information system analyzes and designs with use of
specialized languages like UML and so on, is the one of main results of object
approach.

13.5. Unified Modeling Language

Object oriented approach to system modeling and design, named Uni-
fied Modeling Language (UML) is a graphical language. UML has a group of
parents. The most important are: Grady Booch, James Rumbaugh and Ivar
Jacobson [12]. The Object Management Group (OMG) – organization estab-
lished in 1989 is responsible for standardization and further development of
the language. The UML or rather its software realization (a processor), is a
powerful tool to design and analyze relative isolated systems, i.e., information
systems. UML operates a group of artifacts, named: class diagram, objects
diagram, use case diagram, sequence diagram, state machine diagram, com-
ponent diagram, package diagram, deployment diagram, collaboration dia-
gram, and so on. UML functionality, carried on by UML processor, is extend-
ed by specialized languages like Business Process Modeling Notation

 From relatively isolated system to object approach… 203

(BPMN)6. Some examples of the UML processor possibilities (to create, ana-
lyze, improve and simulate relative isolated systems) are presented below:

• Capture user's requirements by focusing on who (actor) wants to do
what (use case) with the system: Identify functional requirements
through users' scenario development; Specify use case details; Identify
and document the interactions between use cases and actors with flow
of events.

• Business Analyst draws and produce professional workflow diagram.
UML also includes set of analytical tools for analysis and improves
business process. Last but not least, instead of printing diagrams with-
out arrangement, Business Analyst can produce tidy and up-to-date re-
port automatically: Write operational procedure; Write step-by-step
procedure for all business process tasks.

• Business process improvement helps organizations to optimize their
current business processes in a systematic way. It is mainly concerned
with desirable outcome in better resource management. Various tools,
such as: Business Process Modeling Notation designer, assist business an-
alysts in decision-making.

• Handy business rule editor enables users to describe, analyze and man-
age business operation and business logic as well. In model diagrams,
the relationships among terms can be visualized.

• Capture software requirements with UML use case diagram and write
use case flow. Elaborate and design user interactions with sequence
diagram. Edition provides full use case modeling toolset and all UML
diagrams for system analyst to design software.

• A UML Diagram elaborates system design decision and simplifies the
communications between Project Manager, Software Architect, Sys-
tem Analyst, Designer and Developer.

• The simulation software helps to model business processes - with a
visual language adopted worldwide — Business Process Modeling No-
tation (BPMN). Process simulation helps to spot potential bottlenecks
for optimization.

6 Business Process Modeling Notation (BPMN) - www.bpmn.org.

204 Advances in Software Development

• Design conceptual/logical/physical database with ER Diagram (ERD)7:
Generate or update database from ERD; Reverse engineer ERD from
legacy database (Oracle, MS SQL, MySQL, PostgreSQL and more);
Synchronization between class diagram and ERD; Generate and re-
verse database; In addition to visualizing database with ERD is also
possible.

• Comfortable modeling environment containing: Intuitive user-interface
boosts modeling productivity; The unified modeling interface is ready
for cross-platform corporate environments (i.e. Windows, OSX and
Linux).

13.6. Conclusions

The idea of relatively isolated system finds its continuation and further
formalization in object approach but still waits for its’ theoretical background.

Bibliography

[1] Henryk Greniewski, Logique et cybernetique, Actes du 1-er Congres
International de Cybernetique, Namur 1956.

[2] Jay W. Forrester, Industrial Dynamics – a major breakthrough for
decision Makers, Harvard Business Review, Vol. 36 No 4 pp 37 –
66.

[3] Ivar Jacobson, Maria Ericson and Agneta Jacobson, The Object Ad-
vantage – business process reengineering with object technology,
Addison-Wesley Publishing Company, 1994.

[4] Ole-Johan Dahl and Kristen Nygaard, Class and subclass declara-
tions. In Proceedings from IFIP TC2 Conference on Simulation Pro-
gramming Languages, Lysebu, Oslo, ed.: J. N. Buxton, pages 158-
174. North Holland, May 1967.

7 ER Diagram (ERD) - www.umsl.edu.

 From relatively isolated system to object approach… 205

[5] Adele Goldberg & Alan Kay, ed. (March 1976). Smalltalk-72 In-
struction Manual. Palo Alto, California: Xerox Palo Alto Research
Center.

[6] Grady Booch, Ivar Jacobson & James Rumbaugh (2000) OMG Uni-
fied Modeling Language Specification, Version 1.3 First Edition:
March 2000.

[7] Henryk Greniewski, Cybernetics without mathematics, Pergamon
Press and PWN, Warsaw 1960.

[8] Ian Graham, Alan O’Callaghan, Alan Cameron Wills, Object-
Oriented Methods – Principles & Practices, Third Edition Pearson
Education Ltd., 2001.

[9] Invar Jacobson, Maria Ericson and Agneta Jacobson, The Object Ad-
vantage – business process reengineering with object technology,
Addison-Wesley Publishing Company, 1994.

[10] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design
Patterns – Elements of Reusable Object-Oriented Software, 1st Edi-
tion published by Pearson Education, Inc., publishing as Addison-
Wesley, 1995.

[11] Scott Henninger & Victor Corrêa, Surveying Software Pattern Col-
lections 1-1-2007 – DigitalCommons, University of Nebraska - Lin-
coln.

[12] Grady Booch, James Rumbaugh, Ivar Jacobson, UML User Guide,
Addison-Wesley, 1999.

Authors and affiliations

Barbara Begier – Chapter 1
Institute of Control and Information Engineering, Faculty of Electrical
Engineering, Poznan University of Technology,
barbara.begier@put.poznan.pl

Walery Susłow – Chapter 2
Department of Computer Engineering, Faculty of Electronics and Computer
Science, Koszalin University of Technology, walery.suslow@tu.koszalin.pl

Michał Statkiewicz – Chapter 2
Department of Computer Engineering, Faculty of Electronics and Computer
Science, Koszalin University of Technology,
michal.statkiewicz@weii.tu.koszalin.pl

Szymon Kijas – Chapter 3
Institute of Automatic Control and Computational Engineering, Software
engineering, Warsaw University of Technology, s.kijas@elka.pw.edu.pl,

Andrzej Zalewski – Chapter 3
Institute of Automatic Control and Computational Engineering, Software
engineering, Warsaw University of Technology, a.zalewski@ia.pw.edu.pl

Jakub Swacha – Chapter 4
Institute of Information Technology in Management, Faculty of Economics
and Management, University of Szczecin, jakubs@wneiz.pl

Karolina Muszyńska – Chapter 4
Institute of Information Technology in Management, Faculty of Economics
and Management, University of Szczecin, karolina.muszynska@wneiz.pl

Zygmunt Drążek – Chapter 4
Institute of Information Technology in Management, Faculty of Economics
and Management, University of Szczecin, drazek@wneiz.pl

Bartosz Wilk – Chapter 5
AGH Krakow, ACC Cyfronet, b.wilk@cyfronet.pl

Marek Kasztelnik – Chapter 5
AGH Krakow, ACC Cyfronet, m.kasztelnik@cyfronet.pl

208 Advances in Software Development

Marian Bubak – Chapter 5
AGH Krakow, Department of Computer Science and ACC Cyfronet,
bubak@agh.edu.pl

Mariusz Jarocki – Chapter 6
Faculty of Mathematics and Computer Science, University of Lodz,
jarocki@math.uni.lodz.pl

Agata Półrola – Chapter 6
Faculty of Mathematics and Computer Science, University of Lodz,
polrola@math.uni.lodz.pl

Artur Niewiadomski – Chapter 6
Institute of Computer Science, Siedlce University of Natural Sciences and
Humanities, aniewiadomski@gmail.com

Wojciech Penczek – Chapter 6
Institute of Computer Science, PAS and Siedlce University of Natural Sciences
and Humanities, penczek@ipipan.waw.pl

Maciej Szreter – Chapter 6
Institute of Computer Science, Polish Academy of Sciences,
mszreter@ipipan.waw.pl

Bogumiła Hnatkowska – Chapter 7
Institute of Informatics, Faculty of Informatics and Management, Wroclaw
University of Technology, Bogumila.Hnatkowska@pwr.wroc.pl

Radosław Tumidajewicz – Chapter 7
Institute of Informatics, Faculty of Informatics and Management, Wroclaw
University of Technology, radek@zacnie.net

Tomasz Straszak – Chapter 8
Institute of Theory of Electrical Eng., Measurement and Information Systems
Faculty of Electrical Engineering, Warsaw University of Technology,
t.straszak@iem.pw.edu.pl

Michał Śmiałek – Chapter 8
Institute of Theory of Electrical Eng., Measurement and Information Systems
Faculty of Electrical Engineering, Warsaw University of Technology,
smialek@iem.pw.edu.pl

Anna Derezińska – Chapter 9
Institute of Computer Science, Faculty of Electronics and Information
Technology, Warsaw University of Technology, A.Derezinska@ii.pw.edu.pl

 Authors and affiliations 209

Piotr Trzpil – Chapter 9
Institute of Computer Science, Faculty of Electronics and Information
Technology, Warsaw University of Technology

Michał Żebrowski – Chapter 10
Orange Polska, michal.zebrowski@orange.com

Andrzej Ratkowski – Chapter 10
Institute of Control and Computation Engineering, Warsaw University of
Technology, a.ratkowski@elka.pw.edu.pl

Patryk Czarnik – Chapter 11
Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics,
University of Warsaw, czarnik@mimuw.edu.pl

Jacek Chrząszcz – Chapter 11
Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics,
University of Warsaw, chrzaszcz@mimuw.edu.pl

Aleksy Schubert – Chapter 11
Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics,
University of Warsaw, alx@mimuw.edu.pl

Janusz Zalewski – Chapter 12
Dept. of Software Engineering, Whitaker College of Engineering, Florida Gulf
Coast University, zalewski@fgcu.edu

Marek J.Greniewski – Chapter 13
Institute of Computer Science, Maria Sklodowska-Curie Warsaw Academy,
marek@greniewski.pl

